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Abstract

On August 14th, 2018, a Beijing resident living in Xicheng District found a female H. longicornis tick attached to the
skin at the front of his upper shin. On examination, the patient was afebrile and appeared well. The species of the
tick was identified through morphological characteristics and phylogenetic analysis based on cytochrome C oxidase
subunit I. This H. longicornis tick was screened for tick-borne pathogens such as viruses, bacteria and parasites. RNA
pathogens were screened by PCR and sequencing, while DNA pathogens were screened by metagenomic analyses.
It was found that the tick was positive for the DNA sequences of zoonotic and animal pathogens such as A.
phagocytophilum, Ehrlichia minasensis and C. burnetii. Considering the good health condition of the patient, we
hypothesized that the pathogens originated from the tick specimen itself rather than host blood meal. For the first
time, our study reveals the possible risk of transmission of tick-borne pathogens to human beings through tick bit
in downtown Beijing. Further research is needed to screen for tick-borne pathogens among unfed ticks collected
from central Beijing.
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Background
Ticks were the first arthropods to be recognized as vec-
tors that can transmit pathogens to human beings and
are second only to mosquitoes as vectors of infectious
diseases (Dantas-Torres et al. 2012). More than 30 emer-
ging tick-borne pathogens have been confirmed in main-
land China since the 1980s, such as species of the
spotted fever group rickettsiae and species in the family
Anaplasmataceae (Fang et al. 2015). Humans are occa-
sional host of ticks, and these emerging tick-borne
agents have become a real threat to human health in
China (Socolovschi et al. 2009).The northwestern part of

Beijing, especially Yanqing and Huairou Districts, is
dominated by the Jundu Mountains, while the western
part, Mentougou and Fangshan Districts, is framed by
Xishan or the Western Hills (Cheng et al. 2016). Forest
areas and grasslands in the suburban mountains of
Beijing provide habitats for livestock, wildlife and ticks
(Li et al. 2002; Lu et al. 2013). There are several reports
that ticks bit humans in the suburban areas of Beijing
(Li et al. 2002; Lu et al. 2013). Until now, the cases of
humans bitten by ticks reported in Beijing have all
occurred in suburban areas rather than downtown areas.
Downtown Beijing includes Chaoyang, Haidian, Fengtai
and Shijingshan Districts, especially the Dongcheng and
Xicheng Districts, which are in the center of Beijing.
In this study, a case of a person bitten by H. longicor-

nis that occurred in Xicheng District is reported for the
first time. Generally, ticks inhabit suburban areas, and
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ticks are rarely found in downtown Beijing. Tick-borne
pathogens, including viruses, bacteria and parasites, were
screened in this tick specimen, and our results showed
that this tick was positive for the DNA sequences of
zoonotic and animal pathogens such as A. phagocytophi-
lum, Ehrlichia minasensis and C. burnetii. This high-
lights the risk of transmission of tick-borne pathogens
from ticks to humans through the bit in the downtown
area of Beijing, as H. longicornis is a tick vector of high
medical significance.

Results
Case report
A 65-year-old healthy man discovered a tick attached to
the skin on the front of his upper shin on August 14th,
2018. He had not traveled outside Xicheng District of
Beijing within 7 d, and he had no exposure to farm ani-
mals, wild animals or pets. Within the previous week,
the patient had not been outside his resident community
or surrounding markets/streets. After identified it as a
possible tick through visual inspection, this tick was re-
moved from the skin by wiping it with alcohol. The area
around the attachment site was raised, solid and soft,
with slightly red concentric rash around it. There were
no other symptoms, such as fever, chills, headache,
fatigue or muscle aches. As the patient’s symptoms were
mild, serological examination was not recommended.
After a week of observation, the patient did not develop
worsening symptoms, and the previous symptoms, such
as concentric rash, vanished without medical attention.

Species identification
Morphological characteristics of body dorsal and ventral
views, dorsal integument, capitulum and legs of female
ticks are used for species identification. The tick was
identified as a female Hemaphysalis tick by its unique
combination of morphological characters.
Sequence analysis revealed that COI sequence derived

from the specimen shared 99% sequence identity with
COI for H. longicornis (MG721044.1 and JQ737096.1).
In addition, phylogenetic analysis using sequences derived
from COI sequences confirmed that the species of the
tick specimen was H. longicornis (Fig. 1).

Molecular detection of tick-associated RNA pathogens
through PCR
RNA viruses belonging to Flavivirus, Phlebovirus, Nairo-
virus and Hantavirus can cause serious human diseases
(Honig et al. 2004; Lv et al. 2018; Matsuno et al. 2015;
Wójcik-Fatla et al. 2011). Viruses belonging to the first
three have been demonstrated to spread to people
through ticks, while Hantavirus can be spread through
rodents (Honig et al. 2004; Lv et al. 2018; Matsuno et al.
2015; Wójcik-Fatla et al. 2011). In this study, RNA was

extracted from the H. longicornis specimen and was
screened for the presence of Flavivirus, Phlebovirus,
Nairobivirus and Hantavirus. Results showed that it was
negative for these viruses.

Investigation of tick-associated DNA pathogens via
metagenomic analyses
Metagenomic sequencing and analyses were utilized to
screen the DNA of pathogens in the tick specimen.
Krona analyses showed that several bacterial pathogens
belonging to Alphaproteobacteria and Gammaproteo-
bacteria were detected in the H. longicornis specimen. A.
phagocytophilum, Ehrlichia minasensis and Rickettsia
amblymmatis belonging to the Alphaproteobacteria de-
tected in the tick specimen are shown in Fig. 2. The
counts of mappable reads are indicators of the abun-
dance of a species, although the two are not exactly the
same. A. phagocytophilum accounted for 51% of map-
pable reads for the bacterial species within Alphaproteo-
bacteria, while E. minasensis accounted for 24%. C.
burnetii and Coxiella-like endosymbionts belonging to
Gammaproteobacteria detected in the tick specimen are
shown in Fig. 3. C. burnetii accounted for 16% of the
counts of mappable reads for the bacterial species within
Gammaproteobacteria. The relative abundance of DNA
segment reads of bacterial pathogens is shown in Fig. 4.
A. phagocytophilum, E. minasensis and C. burnetti were
among the most abundant DNA pathogens within the
tick specimen. DNA sequences of tick-borne parasites
such as Babesia spp. and Theileria spp. were not
detected in this tick specimen.

Discussion
H. longicornis ticks, commonly associated with livestock
(e.g., sheep, goats, horses and cattle), and wild animals
such as deer and birds, occasionally bite humans (Choe
et al. 2011). A previous investigation showed that the
dominant tick species in forest areas of Beijing was H.
longicornis, followed by H. concinna, D. silvarum, Ixodes
persulcatus and Rhipicephalus sanguineus (Li et al.
2002). Several cases in which humans were bitten by
ticks have been reported in forested areas in Beijing,
such as Huairou and Yanqing districts, and these pa-
tients all had a travel history to the suburbs of Beijing
(Liu et al. 2020). Fortunately, none of the patients in the
above cases experienced serious symptoms and did not
require any further treatment. In fact, the number of
reports of tick bites is very limited. Although there is the
possibility that some cases were not reported, the
frequency of tick bites is probably not very high in
Beijing. In this study, the patient’s recent 7 days of out-
door exposure before the tick bite was restricted to his
resident community and the surrounding markets/streets.
H. longicornis tick was found attached to the patient’s skin,
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and there was little blood within the tick. It is speculated
that the length of blood-feeding time of the tick on the pa-
tient was not long and that the tric bit patient in the lawns
of his resident community or adjacent areas in Xicheng
District. This research showed a risk of being bitten
by H. longicornis tick in the downtown area of Beijing for
the first time.
Severe fever with thrombocytopenia syndrome bun-

yavirus (SFTSV) is a currently emerging pathogen, and
H. longicornis has been proven to be the definite reser-
voir and vector responsible for SFTSV transmission to
humans (Zhuang et al. 2018). In this study, bacterial
pathogens, including A. phagocytophilum, E. minasensis,
R. amblymmatis, C. burnetii and Coxiella-like endosym-
bionts, were detected in H. longicornis. A. phagocytophi-
lum and C. burnetii were among the most abundant
zoonotic pathogens within the tick specimen (Kim et al.
2003; Lee et al. 2004). Fortunately, the patient’s mild

symptoms vanished soon without medical care and he
did not develop a clinical illness over the following 3
months. Several key factors affect the infection by tick-
borne pathogens through tick bites: the activity and
quantity of pathogens, the infection ability of pathogens,
the immunity capability of patients, and the length of
blood-feeding time of patients. It is suspected that a
short length of blood-feeding time and a high level of
immunity of healthy hosts prevent the infection of these
pathogens. However, there have been several reports
about tick-borne pathogens such as A. phagocytophilum
in humans with tick bites (Pascoe et al. 2019; Jahfari
et al. 2016). The probability of infection with a tick-
borne pathogen other than Lyme spirochetes after a tick
bite is approximately 2.4% in the Netherlands (Jahfari
et al. 2016). This study revealed the possible risk of
transmission of tick-borne pathogens to human beings
through tick bites in downtown Beijing.

Fig. 1 Phylogenetic analyses of tick species based on COI. Neighbor-joining phylogenetic analysis based on partial tick COI sequences. Bootstrap
values are indicated at the nodes. The scale bar indicates the degree of divergence represented by a given length of a branch. The red dot
indicates the COI sequence acquired in this study
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Previous studies have shown that Ehrlichia spp. such
as E. chaffeensis have been detected in H. longicornis
ticks (Lee and Chae 2010). In this study, E. minasensis
was detected from H. longicornis specimens in Beijing.
To our knowledge, this is the first report of E. minasen-
sis in China (Cabezas-Cruz et al. 2016; Cicculli et al.
2019). Based on the results of this study, it is speculated
that the prevalence of E. minasensis in the local live-
stock of Beijing is possible, but further investigation is
needed.

R. amblyommii is a pathogen belonging to the
Rickettsiae spotted fever group (SFG) (Merhej et al.
2014; Blanton LS et al. 2014). R. amblyommii was
detected in A. americanum ticks in the United
States of America, and then R. amblyommii was
detected in Am. pseudoconcolor ticks in Brazil
(Goddard and Norment 1986; Silva et al. 2018). To
our knowledge, R. amblyommii has been detected
in H. longicornis in China for the first time in this
case. The presence of R. amblyommii increases the
complexity status of spotted fever rickettsiosis in
China as R. raoultii, R. sibirica, Candidatus R.
longicornii and R. jingxinensis belonging to SFG

have been previously proven to be present in China
(Liu et al. 2020; Yu et al. 1993).

Conclusion
We certified that this tick was positive for the DNA se-
quences of zoonotic and animal pathogens such as A.
phagocytophilum, Ehrlichia minasensis and C. burnetii
by using metagenomic analyses. The tick, identified as
H. longicornis, fed on a human in the downtown area of
Beijing.

Materials and methods
Specimen identification
The tick was kept alive and sent to the Institute of Ani-
mal Inspection and Quarantine (IAIQ), Chinese Acad-
emy of Inspection and Quarantine (CAIQ), for species
identification. It was killed in hot water (80 °C) according
to a previously described method and dried on filter
paper (Soares et al. 2013). Digital images of the speci-
men were taken with a stereomicroscope (Discovery
V20, Zeiss, Oberkochen, Germany). The tick was identi-
fied to species by morphology according to standard
morphological characteristics, including body dorsal and
ventral views, dorsal integument, capitulum and legs,

Fig. 2 Hierarchical classification and distribution of various species belonging to Alphaproteobacteria detected in the tick specimen using KRONA
extension. The red dots indicate pathogens that can infect humans
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and corroborated by deriving sequences for mitochon-
drial cytochrome C oxidase subunit I (COI) (Murrell
et al. 2001). Digital images of the tick specimen are
provided in Fig 5. Partial tissue of the tick was used for
ribonucleic acid (RNA) and deoxyribonucleic acid
(DNA) extraction. The remaining tissue of the tick was
preserved at − 80 °C.

DNA and RNA extractions from the tick
The tick was washed three times with distilled water and
dried on filter paper. Then it was dissected with dispos-
able scalpels: one quarter utilized for DNA extraction
and another quarter utilized for RNA extraction. The

remaining half was preserved at − 80 °C. DNA and RNA
were extracted according to a previously described
method (Lv et al. 2018).

Molecular identification of the tick species
Sequences of COI were amplified by PCR using the pri-
mer pair LCO1490/HCO2198 (Folmer et al. 1994). This
universal primer pair was designed to amplify a 710 bp
fragment of COI from 11 invertebrate phyla, including
ticks. PCR amplification and sequence alignment were
analyzed as previously described (Lv et al. 2014). COI se-
quence has been submitted to GenBank, and the acces-
sion number is MZ452024.

Fig. 3 Hierarchical classification and distribution of various species belonging to Gammaproteobacteria detected in tick specimens using KRONA
extension. The red dots indicate pathogens that can infect humans
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Detection of tick-associated RNA viruses through PCR
Reverse transcription was carried out with M-MLV re-
verse transcriptase (Promega, WI, USA) in a reaction
volume of 40 μL, which included 18 μL extracted RNA,
8 μL 5× RT buffer, 2 μL dNTPs (10 mM), 3 μL DTT (0.1
M), 4 μLM-MLV reverse transcriptase (200 U/μL), 1 μL
RNasin (40 U/μL), 2 μL 10× hexanucleotide mix, and
2 μL molecular grade H2O.
Detection of Flavivirus RNA was conducted using hemi-

nested PCR targeting the RNA-dependent RNA poly-
merase gene, as described previously (Lv et al. 2018). In
brief, 5 μL cDNA was utilized as a template for each
reaction. Reaction master mix was prepared according to
the manufacturer’s protocol, and PCR conditions de-
scribed in previous studies were used (Lv et al. 2018).
Detection of Hantavirus RNA was conducted using

nested PCR targeting the L-segment, as described pre-
viously (Wójcik-Fatla et al. 2011). In brief, 5 μL cDNA was
utilized as a template for each reaction. Reaction master

mix was prepared according to the manufacturer’s proto-
col, and PCR conditions described in previous studies
were used.
Detection of Phlebovirus (L-segment) was performed

by PCR using a mixture of ppL1/ppL2 primers (40 pmol
each) with the reaction conditions previously described
(Matsuno et al. 2015).
Detection of Nairovirus (L-segment) was performed by

PCR using 6942+ and 7385- primers with the reaction
conditions previously described (Honig et al. 2004).

Sequence and phylogenetic analyses of PCR-amplified
DNA segments
DNA amplicons of the correct size were sequenced by
BGI Tech Solutions Co., LTD (Liuhe, Beijing). DNA se-
quence was assembled and edited in MEGA X (Kumar
et al. 2018). Sequence alignments were conducted as de-
scribed (Lv et al. 2018). Sequence alignments were con-
ducted using ClustalW within MEGA V.7.0 (Kumar
et al. 2018) using default parameters (open gap penalty =
10.0, extend gap penalty = 5.0) before subsequently being
checked by visual inspection. Bootstrapping (1000 repli-
cates) was utilized to estimate node support. Pairwise
deletion was used for gaps/missing data. Based on the
K2P distances, phylogenetic trees were constructed with
the combined datasets of all major tick genera using the
neighbor-joining method. For COI analysis, all codon
positions and noncodon sites were combined and tested.

Metagenomic sequencing and analyses
Both quality and quantity of the extracted DNA were
assessed by measuring the absorbance at wavelengths of
260 nm and 280 nm. One microgram of high-quality
DNA was used for subsequent library construction. A
sequencing library was generated using the NEBNext®

Fig. 4 The relative abundance of various bacterial species detected in the tick specimen. The red dots indicate pathogens that can infect humans

Fig. 5 Morphological characteristics of the tick (females) by
stereomicroscopy. A dorsal view (20×); B ventral view (20×)
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Ultra™ DNA Library Prep Kit from Illumina (NEB, USA)
based on the kit instructions. The Illumina HiSeq plat-
form was used to sequence the library preparations. The
specific processing steps were as follows: a) remove the
reads that contained low-quality bases (default quality
threshold value ≤38) above a certain portion (default
length of 40 bp); b) remove the reads in which the N base
reached a certain percentage (default length of 10 bp); c)
remove reads that shared the overlap above a certain
portion with Adapter (default length of 15 bp). Consider-
ing the possibility of host pollution in sample, the clean
data needed to be blasted to the host database, which
defaults using Bowtie 2.2.4 software (Langmead and
Salzberg 2012) to filter the reads that are of host origin.
The parameters are as follows according to the previous
description: --end-to-end, −-sensitive, −I 200, −X 400
(Karlsson et al. 2012).
The samples combined and then assembled using

SOAP denovo (Luo et al. 2012)/MEGAHIT (Li et al.
2015) software as previously described (Brum et al. 2015;
Nielsen et al. 2014; Qin et al. 2014).
CD-HIT software (Fu et al. 2012) was utilized to clus-

ter sequences (parameters -c 0.95, −G 0, −aS 0.9, −g 1,
−d 0), and MetaGeneMark (Qin et al. 2012) was used to
predict and analyze the ORF (open reading frame).
Clean data of the sample were mapped to the initial gene
catalog using Bowtie 2.2.4, and the number of reads to
which genes mapped in the sample with parameter set-
tings as --end-to-end, −-sensitive, −I 200, and −X 400.
Genes with ≤2 reads in the sample were filtered, and
gene catalog (Unigenes) was obtained and eventually
used for subsequent analysis. Based on the number of
mapped reads and the length of genes, the abundance
information of each gene in the sample was statistically
analyzed. Abundance of a species in one sample equals
the sum of gene abundance annotated for the species;
gene number of a species in a sample equals the number
of genes whose abundance is nonzero (Li et al. 2014; Fu
et al. 2012; Qin et al. 2012; Le Chatelier et al. 2013). The
basic information statistics, core-pan gene analysis,
correlation analysis of the sample and Venn figure
analysis of the number of genes were all based on the
abundance of each gene in the gene catalog.

Taxonomy prediction
DIAMOND software (V.0.9.9, https://github.com/
bbuchfink/diamond/) was used to blast unigenes to
the sequences of bacteria, fungi, archaea and viruses,
which were all extracted from the NR database (Version:
2018–01–02, https://www.ncbi.nlm.nih.gov/) of NCBI
with the parameter settings blastp-e 1e-5 (Buchfink
et al. 2015).
To ensure the species annotation information of the se-

quences, we chose the result for which the e value ≤ the

smallest e value * 10 to take the LCA algorithm, which
was applied to the system classification of the MEGAN
software (Huson et al. 2011).
Data containing number of genes and abundance in-

formation of the sample in each taxonomy hierarchy
(kingdom, phylum, class, order, family, genus and spe-
cies) were obtained based on the LCA annotation result
and the gene abundance result.
Krona analysis, the exhibition of generation situation

of relative abundance, the exhibition of abundance clus-
ter heat map, PCA (R ade4 package, V.2.15.3) (Avershina
et al. 2013) and NMDS (R vegan package, V.2.15.3)
(Magali Noval Rivas et al. 2013) decrease-dimension
analysis were based on the abundance table of each
taxonomic hierarchy. Differences between groups were
analyzed according to the references (White et al. 2009).
LEfSe analysis was conducted by LEfSe software (the
default LDA score was 3) (Segata et al. 2011). Finally,
random forest (RandoForest) (Williams 2014) was used
to construct a random forest model. Important species
were screened out by MeanDecreaseAccuracy and
MeanDecreaseGin, cross-validated with each model
(default 10 times) and plotted with the ROC curve.
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