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Abstract 

Mycobacterium tuberculosis (M. tuberculosis) can replicate in the macrophage by interfering with many host protein 
functions. While it is far from known these host proteins for controlling M. tuberculosis infection. Herein, we infected 
macrophages including THP-1 and Raw264.7 cells with M. tuberculosis and identified the differentially expressed genes 
(DEGs) in the interferon signaling pathway. Among them, 2′-5′ oligoadenylate synthetase-like (OASL) underwent the 
greatest upregulation in M. tuberculosis-infected macrophages. Knockdown of the expression of OASL attenuated M. 
tuberculosis survival in macrophages. Further, bioinformatics analysis revealed the potential interaction axis of OASL-
TAB3- Rv0127, which was further validated by the yeast-two-hybrid (Y2H) assay and Co-IP. This interaction axis might 
regulate the M. tuberculosis survival and proliferation in macrophages. The study reveals a possible role of OASL during 
M. tuberculosis infection as a target to control its propagation.
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Introduction
Tuberculosis (TB), caused by Mycobacterium tuberculosis 
(M. tuberculosis), has been a leading bacterial infectious 
disease with high morbidity and mortality. In 2020, TB 

caused 1.2 million deaths (WHO 2020) and can maintain 
long-term survival in the host due to its escaping abil-
ity initiated by the host immune responses (Chen et  al. 
2021). The Interaction between M. tuberculosis and the 
host immune system remains elusive, pointing to the 
importance of this pathogen-host interaction for TB 
control.

Studies have reported that many cells are involved in 
the immune defense against M. tuberculosis, such as mac-
rophages, dendritic cells, neutrophils, NK cells and some 
atypical T cells. (Liu et al. 2017). Thus, host innate immu-
nity plays an important role in M. tuberculosis infection 
(Goldberg et al. 2014). As an important part of the host 
immune system, macrophages are the first line of defense 
against M. tuberculosis infection (Zhang et  al. 2019). 
However, M. tuberculosis can evade the immune clear-
ance of the macrophages through various host-pathogen 
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interaction pathways (Hmama et  al. 2015). M. tubercu-
losis infection can alter gene expression profiles of host 
cells, and comparative analysis of gene expression pro-
files in different cells can facilitate a better understand-
ing of the immunomodulatory effects of M. tuberculosis 
in macrophages.

Interferons play different roles during the invasion of 
M. tuberculosis. For example, the Type I IFN pathway 
plays a deleterious role for the host in mycobacterial 
infection by enhancing pathogen survival (Lai et al. 2020). 
However, type II interferons overcome M. tuberculosis-
induced arrest of phagosome maturation, ensuring deliv-
ery of the bacterium to the phagolysosome, and leading 
to its elimination (Philips and Ernst 2012). IFN also acts 
as a host restriction factor to stimulate various host 
gene expression functions. As one of the IFN-stimulated 
genes (ISGs) family, 2′-5′ oligoadenylate synthetases-like 
(OASL) protein was more highly expressed in active TB 
patients’ sera than that in latent TB patients’ sera. How-
ever, it significantly decreased 6 months after treatment, 
indicating changes in the type I IFN response upon ther-
apy (Sambarey et al. 2017). During M. tuberculosis infec-
tion, OASL is highly induced in host cells (Etna et  al. 
2015; Leisching et al. 2017a; Zhang et al. 2019) whereas, 
its biological role during infection is not completely clear.

In the current study, we analyzed the gene expres-
sion profiles in the two types of macrophages after M. 
tuberculosis infection and found the interferon signaling 
pathway genes as highly enriched among differentially 
expressed genes (DEGs) of macrophages. Among them, 
the expression of OASL was significantly up-regulated 
in macrophages infected with M. tuberculosis, and the 
intracellular survival ability of M. tuberculosis was atten-
uated after its knockdown. Further research shows that 
OASL may affect the intracellular survival of M. tubercu-
losis through the OASL-TAB3-Rv0127 interaction axis. 
Collectively, the IFN signaling pathway plays a significant 
role during the M. tuberculosis infection, and the OASL 
is likely to become the potential target for developing 
new TB treatments.

Results
M. tuberculosis induces differential expression of interferon 
and its stimulated genes in macrophages
Macrophages are the main targeted cells during M. 
tuberculosis infection. To further investigate the poten-
tial restriction factor of host immune cells for control-
ling bacterial survival, THP1, and Raw 264.7 cells were 
infected with M. tuberculosis for RNA-seq (Fig.  1A). 
The Reactome enrichment was performed for the dif-
ferentially expressed genes (DEGs) between M. tuber-
culosis-infected cells and the control groups to annotate 
their related pathways. Our results showed that the 

up-regulated DEGs were enriched in IFN signaling-
related pathways (Fig. 1B and C).

The cnet plot was then generated and found that 
most of the up-regulated ISGs were enriched in inter-
feron signaling-related pathways (Fig. 1D). Among these 
genes, it was observed that IFNB1, ISG15, IFNL1, OAS1, 
OAS2, OAS3, and OASL were highly induced in THP-1 
cells after M. tuberculosis infection (Fig.  1E). Whereas, 
ISG15, MAP2K6, OAS1A, OAS2, OASL1, and OASL2 
were highly induced upon M. tuberculosis infection for 
3 days in Raw264.7 cells (Fig.  1F). The qRT-PCR results 
showed that OASL and its homologous gene OASL2 
expression were significantly higher than that of other 
genes in THP-1 cells and Raw264.7 (Fig. 1G and H). The 
results suggest that OASL and homologous genes may 
play key regulatory roles during M. tuberculosis infection 
of macrophages.

OASL facilitates M. tuberculosis survival in macrophages
It has been reported that OASL plays a critical role in 
defining the outcome of pathogen infection (Leisching 
et  al. 2017b). The expression of OASL was validated by 
western blot and we found that the expression of OASL 
was significantly increased at day 3 post-infection in 
THP-1 cells compared to uninfected cells (Fig.  2A). To 
figure out the role of OASL in M. tuberculosis survival 
in macrophages, we designed three gRNAs to interfere 
with the expression of OASL which became significantly 
decreased in THP-1 cells carrying gRNAs targeting 
OASL compared to gRNA control (Fig. 2B, C). To inves-
tigate whether interfering OASL expression affects M. 
tuberculosis survival in macrophages, intracellular bac-
teria counting was performed. We found that the num-
ber of M. tuberculosis per cell was significantly decreased 
at day 3 post-infection (Fig.  2D, E). Furthermore, the 
viable intracellular bacteria assay showed a significantly 
decreased number of viable M. tuberculosis in OASL 
knocked down THP-1 cells compared to the gRNA con-
trol at day 3 post-infection (Fig.  2F). Hence, our result 
indicated that the high expression of OASL can promote 
M. tuberculosis survival in THP-1 cells.

Expression profile of OASL and its interaction genes
To identify other host proteins that participate in 
OASL-mediated intracellular survival of M. tubercu-
losis, the potentially interacted proteins with OASL 
were analyzed using STRING. The results showed 
that RSAD2, MX1, MX2, IFI6, ISG15, IRF7, IFIT1, 
IFIT2, IFIT3, and IFI35 might interact with human 
OASL (Fig.  3A), and RNA seq data showed that all of 
them were highly expressed in M. tuberculosis-infected 
THP-1 cells (Fig. 3B). qRT-PCR results have also shown 
increased expression of ISG15, IFIT1, IFIT2, IFIT3, 
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and MX1 in THP-1 cells after M. tuberculosis infec-
tion (Figs. 1G and 3C). For Raw 264.7 cells, MX1, MX2, 
IFIT1, IFIT2, IFIT3, IRF7, RSAD2, DDX58, OASL1, 
and USP18 were predicted to interact with OASL2 
(Fig.  3D). These proteins were highly expressed in M. 
tuberculosis-infected Raw264.7 cells compared to the 
uninfected control (Fig.  3E). The expression of MX2, 
IFIT3, and USP18 in Raw 264.7 cells was confirmed by 
using qRT-PCR (Fig. 3F).

Further, we examined the expression of IFIT1, IFIT2, 
IFIT3, and MX1 in both OASL knockdown THP-1 cell 
lines and wild-type THP-1 cells with or without M. tuber-
culosis infection. The results showed that IFIT1, IFIT2, 
IFIT3, and MX1 expression significantly decreased in 
OASL knockdown THP-1 cells relative to wild-type 
THP-1 cells after M. tuberculosis infection (Fig.  3G-
J), indicating that these genes might be involved in the 
OASL-mediated intracellular survival of M. tuberculosis 
in THP-1 cells.

OASL promotes intracellular survival of M.tuberculosis may 
be mediated by Rv0127
To investigate whether the high-level OASL expression 
promotes M. tuberculosis survival through interaction 
with M. tuberculosis proteins, a yeast-two-hybrid (Y2H)-
based protein-protein interaction (PPI) network was 
applied to identify the OASL-interacting proteins in M. 
tuberculosis. The results showed that OASL2, the alias 
protein of OASL, was found to interact with transform-
ing growth factor β-activated kinase binding protein 3 
(TAB3), which interacts with Rv0127 of M. tuberculosis 
(Fig.  4A). Thus, we hypothesized that the OASL-TAB3-
Rv0127 axis may facilitate the survival of M. tubercu-
losis in the host cells. To confirm this hypothesis, we 
performed a Y2H assay which showed TAB3 interaction 
with M. tuberculosis protein Rv0127 (Fig.  4B). To verify 
this interaction axis, we have conducted a Co-IP experi-
ment and confirmed the interaction of OASL- TAB3 and 
TAB3-Rv0127 (Fig.  4C, D). In addition, the qRT-PCR 
results showed that the expression of TAB3 was signifi-
cantly increased in THP-1 cells after infection with M. 
tuberculosis relative to the uninfected control, how-
ever, there is no significant difference between OASL 
knockdown THP-1 cells infected with M. tuberculosis 

and uninfected control (Fig.  4E). Therefore, there was 
a potential interaction between OASL-TAB3-Rv0127 
(Fig. 4F).

Discussion
As an intracellular pathogen, M. tuberculosis can alter 
the immune response to prevent itself from being 
cleared by the host immune cells through interac-
tion with host proteins. Thus, host-pathogen interac-
tion determines the outcome following infection by 
M. tuberculosis. M. tuberculosis was engulfed by mac-
rophages, epithelial and endothelial cells (Baltierra-
Uribe et al. 2014; Chen et al. 2015; Fine et al. 2012), and 
has a distinct fate, among which THP-1 cells provided 
M. tuberculosis the best shelter. This suggested that dif-
ferent cells are equipped with different defense machin-
ery to clear invaded bacteria (Chen et al. 2021). Herein, 
we found that the up-regulated genes of macrophages 
after M. tuberculosis infection are enriched in IFN sign-
aling-related pathways. Earlier studies also reported 
that M.tuberculosis infection of macrophages changed 
the gene expression levels of macrophages, and most 
of the up-regulated genes were enriched in innate 
immune response pathways, inflammation-related 
pathways, and immune regulation pathways (Lee et al. 
2019; Ragno et  al. 2001; Roy et  al. 2018; Ehrt et  al. 
2001). These results are consistent with our results that 
the up-regulated genes are enriched in immune-related 
signaling pathways, which play a key role in the host-
pathogen interaction process. Considering the abil-
ity of M. tuberculosis to exhibit long-term persistence 
and proliferation within macrophages, we hypothesized 
that interferon signaling might regulate M. tuberculosis 
survival.

Some studies have featured M. tuberculosis to elicit 
type I IFNs (Collins et al. 2015; Wassermann et al. 2015), 
whereas, the IFN signaling pathway also influenced the 
host immune response during M. tuberculosis infec-
tion, particularly by type I and type II (IFNs) (Lai et  al. 
2020). We found that IFNs and ISGs were differentially 
expressed in the macrophages, such as IFNB1, IFNL1, 
ISG15, and OASL. Among the highest upregulation of 
OASL, its role during M. tuberculosis infection was fur-
ther studied and found that the number of intracellular 

Fig. 1 Differential expression of interferon and its stimulated genes in macrophages after M. tuberculosis infection; A Schematic of infection of M. 
tuberculosis in different macrophages; B–C Reactome pathway enrichment analysis of differential expression genes (DEGs) in the macrophages; D 
The cnet plot was generated for interferon and its stimulated genes; E Gene expression profile of IFNs and ISGs in the THP-1 cells by RNA-Seq; F 
Gene expression profile of IFNs and ISGs in the Raw264.7 cells by RNA-Seq; G–H RNA-Seq data were validated by qRT-PCR in human and murine 
macrophages respectively. Data presented by mean ± SEM. All experiments were performed in triplicate. The values of *p < 0.05 were considered a 
statistically significant difference

(See figure on next page.)
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bacteria was significantly decreased in knocked-down 
OASL THP-1 cells, indicating that OASL facilitates M. 
tuberculosis survival in host cells. Therefore, we hypoth-
esized that M. tuberculosis-induced OASL would have a 
critical role in the modulation of the anti-mycobacterial 
activity of host cells. However, the number of intracel-
lular BCGs, hypovirulent, and hypervirulent M. tuber-
culosis increased when OASL was knocked down in 
macrophages (Leisching et al. 2020). The observed results 
contrast with those proposed in the current study, i.e. 
knock-down OASL inhibits M. tuberculosis replication. 
The possible reason could be that different strains, time 
points and MOI were used. Leisching et al. used hypovir-
ulent R1507 at the MOI of 1 and analyzed the colony for-
mation units (CFUs) at 24 and 96 h postinfection, while 
our study used M.tuberculosis H37Ra strain with MOI 
of 10, and the data were collected at 72 h postinfection. 
Therefore, we speculate that the differences in the experi-
mental parameters may lead to different results.

The STRING analysis revealed that OASL interacts 
with IFIT1, IFIT2, IFIT3, MX1, and MX2, which are 
highly expressed in macrophages after M. tuberculo-
sis infection, and the IFIT1, IFIT2, IFIT3, and MX1 

expressions were reduced after OASL knockdown. The 
IFIT1, IFIT2, IFIT3, and MX1 genes are the important 
interferon-stimulating genes and are the most enriched 
type I interferon signaling pathways, which participate in 
various immune processes (Padariya et al. 2021).

The high expression of OASL could facilitate the sur-
vival of M. tuberculosis in the macrophages. However, 
the mechanism by which M. tuberculosis promotes the 
expression of OASL remains completely unclear. We 
speculated that OASL may interact with pathogenic pro-
teins, thereby affecting the adaptation of pathogens to the 
host. Therefore, we analyzed the host-pathogen protein 
interaction network which was previously constructed 
by our team. Our PPI network results showed that OASL 
interacts with TAB3, which interacts with Rv0127 and 
this was confirmed by the Y2H assay and Co-IP experi-
ment. Rv0127 encodes a maltose-1- phosphate syn-
thetase (maltokinase, Mak), and it may be a potential 
drug target (Mendes et al. 2010). Genomic analysis stud-
ies have shown that the avirulent strain H37Ra genome is 
highly similar to the virulent strain H37Rv (Zheng et al. 
2008), and the Ensembl Bacteria database has shown 
that Rv0127 exists in both virulent and avirulent strains 
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(http:// bacte ria. ensem bl. org/ true). Rv0127 was consid-
ered essential for virulent M. tuberculosis H37Rv growth 
(Mendes et al. 2010). TAB3 is a binding protein of TAK1 
and M. tuberculosis effector protein PtpA partially inhib-
ited the activation of the NF-κB pathway by selectively 
targeting TAB3 (Wang et al. 2015). Thus, our results sug-
gested that OASL promotes the intracellular survival of 
M. tuberculosis during infection by modulating multi-
ple host signaling pathways through the OASL-TAB3-
Rv0127 axis.

Conclusions
This study demonstrates the critical role of OASL in 
restricting M. tuberculosis survival in macrophages. 
Therefore, OASL may be a potential target for the devel-
opment of host-directed therapies.

Materials and methods
Bacteria and cells culture
M. tuberculosis strain H37Ra (ATCC 25177) was cul-
tured in Middlebrook 7H9 broth (Becton Dickinson) 
supplemented with 0.5% glycerol, 0.05% Tween-80, 
and 10% oleic acid albumin dextrose catalase (OADC, 
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Becton Dickinson). For infection, the bacterial culture 
optical densities at 600 nm were adjusted to achieve the 
required MOI and centrifuged at 3000 g for 10 min to pel-
let the bacteria. The pellet was re-suspended in an infec-
tion medium and passed several times through an insulin 
syringe to disperse the bacteria. In addition, 50 μL from 
serially-diluted inoculation was plated to Middlebrook 
7H11 agar (Becton Dickinson) to determine the number 
of viable bacteria (colony forming units - CFU).

The human monocytic cell line (THP-1, ATCC TIB-
202) was maintained in RPMI-1640 medium supple-
mented with 10% FBS and was differentiated for 24 h 
using a culture medium containing 40 ng/mL phorbol 
12-myristate 13-acetate (PMA) before infection. Murine 
macrophages (Raw 264.7, ATCC TIB-71TM) were main-
tained in Dulbecco’s Modified Eagle’s Medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS).

RNA‑Seq library preparation and sequencing
1 ×  106 of cells were seeded into a 6-well plate and incu-
bated with M. tuberculosis (MOI = 10) for 6 h. To stop 
infection, the cells were washed three times with pre-
warmed PBS to remove extracellular M. tuberculosis and 
then supplied with a fresh medium with 5% FBS contain-
ing amikacin (50 mg/ml) (referred to as day 0). The cells 
were lysed with 1 mL of Trizol reagent at 72 h post-infec-
tion. Lysates were mixed with 0.2 mL of chloroform cen-
trifuge for 10 min at 12,000 g at 4 °C. 0.4 mL of aqueous 
layer mixed with 0.4 mL of isopropanol in a new nucle-
ase-free Eppendorf tube. The RNA was precipitated at 
room temperature for 10 min and pelleted by centrifuge 
for 10 min at 12,000 g. Eluted RNAs were washed twice 
with 75% ethanol. The quality and quantity of RNAs 
were examined by a Nanodrop 2000c spectrophotometer 
(Thermo Scientific).

The libraries were generated with VAHTS Stranded 
mRNA-seq Library Prep Kit (Vazyme Biotech Co., Ltd., 
China). Briefly, mRNAs were isolated using mRNA Cap-
ture Beads from 1 μg of total RNA and incubated for frag-
mentation at 94 °C for 8 min to get mRNAs with a length 
of 150 bp – 200 bp. The mRNAs were reverse-transcribed 
to cDNA and converted into double-stranded cDNA 
molecules. Following end-repairing and dA-tailing, the 
pair-ended sequencing adaptors were ligated to the ends 
of the cDNA fragments and then subjected to library 
amplification and purification. The purified libraries were 
validated and quantified using the Agilent 2100 Bioana-
lyzer (Agilent Technologies) and sequenced with the Hi-
Seq X 10 instrument.

NGS data process and visualization
The RNA-seq data was processed into a reading count 
corresponding to each sample following Pertea et  al.’s 

method (Pertea et  al. 2016), then read count lists were 
merged into a matrix by an R package dpylr (https:// 
CRAN.R- proje ct. org/ packa ge= dplyr). The read count 
matrix was applied to DESeq2 (Love et al. 2014) for the 
differential analysis, the genes which abs(foldchange) > 2 
and P value < 0.05 were considered as the significant 
up/down-regulation genes, meanwhile, the normalized 
count was also exported. The gene expression differ-
ential list corresponding to each sample was merged by 
cells using dpylr, and the merged gene list was Reactome 
enriched by R package clusterProfiler (Yu et al. 2012) and 
ReactomePA (Yu and He 2016), then visualized through 
R dotplot function. The cnet plot was generated by clus-
terProfiler. The pathway gene list was downloaded from 
pathcard (https:// pathc ards. genec ards. org/), then the 
count matrix was enriched by the pathcard gene list 
through dpylr, and the enrichment was visualized by 
heatmap generated heatmap. The OASL interaction 
genes were drawn from STRING (https:// string- db. org/), 
these genes were used for generated a gene list, then the 
normalized count matrix was enriched by this list and 
visualized by heatmap The PPI network between M. 
tuberculosis and the host was withdrawn from the previ-
ous study (Yang et al. 2018) and visualized by Cytoscape 
(Shannon et al. 2003).

Construction of OASL knockdown cell lines
Three gRNAs used for oasl gene knockdown were 
designed using E-CRISPR (http:// www.e- crisp. org/E- 
CRISP/). Each gRNA was inserted into the pHKO-dCas9 
plasmid to obtain pHKO-OASL-KD-gRNA1, pHKO-
OASL-KD-gRNA2, pHKO-OASL-KD-gRNA3 or pHKO-
gRNA control. Lentiviruses containing gRNA were 
packaged by transfecting pHKO-OASL-KD-gRNAs or 
pHKO-gRNA control with pSPAX, pMD.2G into 293 T 
cells. Lentiviruses were harvested after 48 h and were 
used to infect THP-1 cells. Subsequently, the section with 
puromycin (2 μg/ml) was carried out. The expression of 
OASL was examined through qRT-PCR. All gRNAs and 
primers are shown in Table 1.

qRT‑PCR
The total RNAs were extracted from cells and animal tis-
sues using RNAiso Plus reagent (Code No. 9109, TaKaRa, 
Japan) and then 500 ng of RNAs were reverse transcribed 
to cDNA using ReverTra Ace qPCR RT Master Mix with 
gDNA Remover Kit (Vazyme Biotech Co. Ltd., China) 
according to the manufacturer’s instruction. SYBR Select 
Master Mix (TOYOBO, Japan) was used for PCR. PCRs 
were run on QuanStudio 6 real-time PCR system and rel-
ative expression was calculated using the  2-ΔΔCt method. 
GAPDH was used as a control. Primers are shown in 
Table 1.

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://pathcards.genecards.org/
https://string-db.org/
http://www.e-crisp.org/E-CRISP/
http://www.e-crisp.org/E-CRISP/
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Western blot
5 ×  106 THP-1 cells were seeded into a 6-well plate and 
differentiated with PMA for 24 h, the THP-1 cells were 
incubated with M. tuberculosis (MOI = 10) for 4 h. To 
stop infection, the cells were washed three times with 
pre-warmed PBS to remove extracellular M. tubercu-
losis and then supplied with a fresh medium with 5% 
FBS containing amikacin (50 mg/ml) (referred to as day 
0). After 72 h, the cells were lysed with RIPA lysis buffer 
containing protease inhibitor with a cocktail and incu-
bated for 10 min on ice. Total proteins were quantified 
using a bicinchoninic acid assay (Beyotime Biotechnol-
ogy, China), and 50 μg total protein was loaded. Proteins 
were transferred to the PVDF membrane after separation 
by SDS-PAGE. The membrane was blocked with fat-free 
milk for 1 h at room temperature after washing three 
times with TBST. Rabbit anti-OASL polyclonal antibody 
in PBST (1:2000) was added and incubated overnight at 
4 °C. The HRP conjugated anti-rabbit antibody (1:300) 
was applied to the membrane after washing three times, 
5 min each time. The membrane was imaged using Bio-
Rad ChemiDoc MP.

Intracellular bacterial viability assay
2.0 ×  105 cells were seeded in a 24-well plate and differ-
entiated with PMA for 24 h, and the THP-1 cells were 

incubated with M. tuberculosis (MOI = 10) for 4 h. To 
stop infection, the cells were washed three times with 
pre-warmed PBS to remove extracellular M. tuberculosis 
and then supplied with a fresh medium with 5% FBS con-
taining amikacin (50 mg/ml) (referred to as day 0). The 
infected cells were lysed after 72 h infection using sterile 
0.1% Tween-80 in water, and viable bacilli were enumer-
ated by serial dilution of lysates and plating on Middle-
brook 7H11 agar. CFUs were counted after 3 to 4 weeks 
of incubation at 37 °C an incubator. All the infections 
were performed in triplicate.

Confocal microscopy
For confocal microscopy, 2.0 ×  105 cells (THP-1-GFP-
sgRNA, THP-1-GFP-OASL-gRNA1, THP-1-GFP-OASL-
gRNA2, and THP-1-GFP-OASL-gRNA3, respectively) 
per well were seeded onto coverslips in a 24-well plate 
and differentiated for 24 h with PMA. RFP-H37Ra 
(MOI = 10) was applied to the wells for 4 h infection at 
37 °C in 5%  CO2. The cells were washed three times with 
pre-warmed PBS to remove extracellular M. tuberculosis, 
and supplied with a fresh medium with 5% FBS contain-
ing amikacin (50 μg/mL). The medium was changed every 
2 days to avoid serum starvation-induced autophagy. The 
infected cells were fixed with 4% paraformaldehyde for 
30 min on day 3 post-infection and the cells were washed 
three times with pre-warmed PBS. The specimens were 

Table 1 Primers used in the study

Name Forward Primer (5′‑3′) Reverse Primer (5′‑3′)

OASL-sgRNA-1 CAC CGG AGC ATT TCC AGG GGA AGC G AAA CCG CTT CCC CTG GAA ATG CTC C

OASL-sgRNA-2 CAC CGG GTC CAG CCC ACG CTT CCC C AAA CGG GGA AGC GTG GGC TGG ACC C

OASL-sgRNA-3 CAC CGG CGG GTG CTG AAG GTA GTC A AAA CTG ACT ACC TTC AGC ACC CGC C

Human-ISG15 GTG GAC AAA TGC GAC GAA CC TCG AAG GTC AGC CAG AAC AG

Human-IFNB1 TCT CCT GTT GTG CTT CTC CAC GCC TCC CAT TCA ATT GCC AC

Human-IFNL1 GGT GAC TTT GGT GCT AGG CT GGC CTT CTT GAA GCT CGC TA

Human-OASL AAC GTG GCA GAA GGG TAC AG TCA AGT GGA TGT CTC GTG CC

Human-IFIT1 CTC TGC CTA TCG CCT GGA TG AGC TTC AGG GCA AGG AGA AC

Human-IFIT2 AGC GAA GGT GTG CTT TGA G GCT TGC CTC AGA GGG TCA AT

Human-IFIT3 GGG CAG ACT CTC AGA TGC TC AAC ACA CCT TCG CCC TTT CA

Human-MX1 GGC ATA ACC AGA GTG GCT GT CAT TAC TGG GGA CCA CCA CC

Human-TAB3 CAG TTG TAC CAC CCA AGC CA TGG GTG TCA TGG ATG TCT GC

Human-GAPDH GGT ATC GTG GAA GGA CTC ATGAC ATG CCA GTG AGC TTC CCG TTCAG 

Mouse OASL1 CCA ACA ATG TGG CAG AAG GC CAC GGT CAC CTG GAT ATC GG

Mouse OASL2 CCA ACA ATG TGG CAG AAG GC CCA ACC GGA GGA GGT TCT TC

Mouse-ISG15 TGG TAC AGA ACT GCA GCG AG AGC CAG AAC TGG TCT TCG TG

Mouse-MAP2K6 CCG CCT CGG GAT TTA GAC TC TGA CGC ATC TTC TCC ACC AC

Mouse-MX2 CCT ATT CAC CAG GCT CCG AA CAC AAA CCC TGG CAA TTC TCG 

Mouse- IFIT3 CTT CAG AGG AGG CGA AGT CC ACA TCG GGG CTC TCC TTA CT

Mouse-USP18 CCC TCA TGG TCT GGT TGG TT TCC TCT CTT CTG CAC TCC GA

Mouse-GAPDH AGG TCG GTG TGA ACG GAT TTGG CGT TGA ATT TGC CGT GAG TGGA 
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mounted onto microscope slides using a prolonged 
antifade reagent. Images were obtained with an Olym-
pus confocal laser microscope system equipped with 
FV10 ASW Imaging Software (Version 4.2, Olympus). 
The number of bacteria from 150 cells was analyzed. All 
infections were performed in triplicate.

Yeast two‑hybrid
The full length of Rv0127 and TAB3 were restriction 
cloned into pmBD and pmAD plasmids of the GAL4 Y2H 
system (Clontech, Mountain-view, CA, USA) respec-
tively as described (Yang et  al. 2018). pmAD-TAB3 was 
transformed into yeast strain Y187, and plated on SD/−T 
selective plates. pmBD-Rv0127 was transformed into 
yeast strain GoldY2H, and plated on SD/−L selective 
plates. GoldY2H cells harboring Rv0127 plasmid and 
Y187 cells harboring TAB3 plasmid were hybridized and 
selected on SD/Leu − Trp − His− Ade − selective plates. 
The yeast strains were transformed with the respective 
constructs and transformants were selected on minimal 
media lacking leucine and tryptophan (−LT). Interac-
tions were assessed by growing trans-formants in liquid 
culture at 30 °C and spotting on SD/ Leu − Trp − His− 
Ade − selective plates. Plates were imaged after 3–5 d 
growth at 30 °C.

Co‑IP assay
Immunoprecipitation and immunoblotting HEK293T 
cells were transiently transfected with pCDNA3.1-
V5-TAB3 and pCAGGS-Flag-Rv0127, pCAGGS-Flag-
OASL2. After 36 h, cells were washed with PBS, followed 
by western blotting and immunoprecipitation with cell 
lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
0.05% Nonidet P-40) with the addition of 1% protease 
inhibitors. Cocktail (Sigma, P8340). After 30 min incuba-
tion on ice, whole cell lysates were centrifuged at 10,000 g 
for 10 min at 4 °C to remove debris. Cell lysates were incu-
bated with V5-tag mAb magnetic agarose beads (MBL, 
M180–10) overnight at 4 °C. Immune complex samples 
were centrifuged, washed 3 times with cell lysis buffer, 
and then boiled in SDS loading buffer for 5–10 min. After 
12% separation by SDS-PAGE, equal amounts of protein 
were electro-blotted onto polyvinylidene fluoride mem-
branes (Millipore, Bedford, MA, USA). Membranes were 
blocked with 0.05% Tween 20 (TBST) and 5% nonfat 
dry milk in triple buffered saline for 2 hr. at room tem-
perature, followed by overnight incubation with pri-
mary antibodies (DDDDK-Tag Rabbit mAb, AE092, 
ABclonal; V5-Tag mAb, AE089, ABclonal). After wash-
ing 3 times with TBST, diluted with appropriate horse-
radish peroxidase-conjugated secondary antibody for 2 h 

at room temperature. Immuno-reactive protein bands 
were visualized by Western ECL clear substrate (BioRad, 
1,705,060).

Statistical analysis
Numerical data were analyzed by GraphPad Prism 7.0 
(La Jolla, CA) software from three independent experi-
ments shown as mean ± SEM. Evaluation of the signifi-
cance of differences between groups was performed by 
using one-way ANOVA or student t-test.
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