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Abstract 

Coinfection, the simultaneous invasion of multiple pathogens into a single host, is a critical but understudied area, 
especially in the farm animal sector. We report a unique and unusual fatal case of coinfection with S. Indiana and S. 
Kentucky, which has rarely been studied in the literature and could hold potential importance for veterinary clinics. 
In silico analysis revealed that all the isolates exhibited extensive multidrug resistance. By analyzing the plasmids, two 
replicons, IncHI2 and IncHI2A, were detected in S. Indiana, whereas no plasmids were detected in S. Kentucky. Chicken 
embryo lethality assays demonstrated that both S. Indiana and S. Kentucky caused 100% mortality by the third day 
post infection, significantly exceeding the lethality of the control strains. These findings emphasize the high patho-
genic potential of these serovars, especially S. Indiana, which carries the cdtB gene encoding typhoid toxin, further 
confirming its increased pathogenicity. Overall, our results underscore the urgent need to improve biosecurity 
measures to mitigate the risk of coinfections involving multidrug-resistant Salmonella strains in poultry production 
environments.
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Introduction
In veterinary medicine, polymicrobial interactions are 
increasingly recognized as critical determinants of dis-
ease progression and clinical outcomes. While primary 
infections often initiate disease processes, subsequent 

coinfections  -  the concurrent colonization of a host 
by multiple pathogens – frequently exacerbate clinical 
manifestations and complicate therapeutic interventions. 
Although extensively studied in human medicine (Wu 
et  al. 2024), the ecological dynamics and clinical impli-
cations of coinfections in veterinary contexts remain 
undercharacterized, particularly regarding their impact 
on poultry health management.

The pathophysiological consequences of coinfections 
extend beyond simple additive effects, creating syner-
gistic interactions that amplify disease severity (Hoarau 
et al. 2020). This phenomenon has been documented in 
poultry through various pathogen combinations, includ-
ing Salmonella-avian influenza virus coinfections (Ara-
fat et  al. 2017) and polymicrobial interactions involving 
Mycoplasma gallisepticum and Escherichia coli (Samy 
& Naguib 2018). Notably, Salmonella serovars have 
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emerged as particularly problematic in modern poultry 
production systems. While S. Gallinarum remains clas-
sically associated with fowl typhoid, contemporary sur-
veillance reveals increasing involvement of non-typhoidal 
serovars such as S. Enteritidis, S. Kentucky, and S. Indi-
ana in poultry mortality events (Jia et  al. 2024). These 
serovars demonstrate remarkable adaptive capabilities, 
colonizing diverse animal hosts (Zhou et  al. 2025) and 
causing pathologies ranging from self-limiting gastro-
enteritis to systemic immunosuppression (Wang et  al. 
2024).

Of particular concern is the global dissemination of S. 
Kentucky and S. Indiana, which have been independently 
isolated from poultry across multiple continents (Hu 
et  al. 2022; Mashe et  al. 2023). However, the potential 
synergistic pathogenicity of these two serovars remains 
unexplored, with no documented cases of coinfection-
associated mortality prior to this investigation. This 
knowledge gap is particularly alarming given their shared 
epidemiological features and antimicrobial resistance 
profiles.

The therapeutic landscape further complicates this 
scenario. While antimicrobials remain essential for 
controlling Salmonella infections, the emergence of 
multidrug-resistant (MDR) strains has reached crisis pro-
portions. Some studies have found that the risk of AMR 
in avian associated Salmonella has gradually increased in 
recent years, and Horizontal transfer of resistome is also 
widespread (Jia et al. 2025). The World Organization for 
Animal Health recognizes this threat through its list of 
critically important antimicrobials, many of which are 
now compromised by resistance mechanisms. Of par-
ticular concern is the role of mobile genetic elements in 
disseminating resistance determinants (Jia et  al. 2023), 
creating reservoirs of antimicrobial resistance genes 
(ARGs) that threaten both veterinary and public health 
sectors (McEwen & Collignon 2018).

This study presents the first documented case of fatal 
coinfection by MDR S. Indiana and S. Kentucky in an 
adult chicken. Through integrated genomic and phe-
notypic analyses, we demonstrate: 1) co-occurrence of 
clinically significant ARGs (including blaCTX-M-14b and 
blaCTX-M-65) in these strains; 2) plasmid-mediated viru-
lence enhancement; and 3) synergistic pathogenicity 
confirmed through embryo lethality assays. Our findings 
underscore the urgent need for enhanced surveillance 
protocols, antimicrobial stewardship programs, and 
revised biosecurity frameworks to address this emerging 
threat to poultry health and food safety.

Emergence of a novel coinfection pattern
The index case establishes S. Indiana and S. Kentucky 
coinfection as a new disease entity in poultry medicine. 

A 32-week-old Taihe silky fowl presenting non-specific 
signs (lethargy, ruffled plumage) succumbed within 24 
h—a disease progression rate 5 × faster than mono-
microbial Salmonella infections (median 5–7 days in 
adult fowl) (Kang et  al. 2024). Postmortem findings of 
hepatosplenic necrosis with multi-organ bacterial iso-
lation (spleen, liver, heart) contrast sharply with typical 
enteric salmonellosis patterns, suggesting hematogenous 
dissemination potentiated by synergistic virulence. This 
accelerated pathogenesis challenges current diagnostic 
paradigms focused on gastrointestinal manifestations, 
urging revised case definitions for acute poultry mor-
tality events. Despite the novel insights, this study was 
limited by the fact that there was only one case, and a 
broader epidemiologic investigation is needed to further 
clarify its specific pattern.

Genomic divergence underlying therapeutic challenges
Whole-genome characterization revealed three phy-
logenetically distinct strains: S. Indiana ST2040 (S–S, 
Table  S1) and two S. Kentucky ST198 variants (S-Li/S–
H). While both serovars exhibited pan-resistance to 
eight antimicrobial classes (Fig.  1A), their resistance 
gene profiles diverged significantly-S. Indiana carried 14 
ARGs versus 11 in S. Kentucky, with only 38% genetic 
overlap (Fig. 2A). Notably, all strains harbored extended-
spectrum β-lactamase genes (blaCTX-M-65 in S. Indiana; 
blaCTX-M-14b in S. Kentucky), conferring cross-resistance 
to third-generation cephalosporins. This parallels recent 
Chinese surveillance showing 72% ESBL prevalence in 
poultry-associated Salmonella (Hu et  al. 2022), under-
scoring the therapeutic crisis in veterinary antimicrobial 
stewardship.

The observed phenotype-genotype concordance 
reached 100% for β-lactams and quinolones (Fig.  1B), 
driven by ESBL production and gyrA/parC mutations 
(S83L/D87 N in S. Kentucky; S80I in S. Indiana) (Fig. 2B). 
Discrepancies in tetracycline resistance (tetA present but 
inactive in S–H) may reflect uncharacterized regulatory 
circuits or efflux pump interactions—a phenomenon 
increasingly reported in MDR Enterobacteriaceae (Jia 
et al. 2023).

Mobilome dynamics driving resistance evolution
We investigated three types of mobile genetic elements 
(MGEs), including transposons, plasmids, and integrons. 
We also analyzed the ARGs associated with each type of 
MGE. Interestingly, plasmid replicons were only detected 
in S. Indiana, specifically IncHI2 and IncHI2 A (Fig. 2C), 
which are self-transmissible and frequently linked to mul-
tidrug resistance in Enterobacteriaceae (Jia et  al. 2023). 
No plasmids were detected in S. Kentucky, indicating that 
its ARGs are likely chromosomally encoded, potentially 
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conferring greater stability to its resistance phenotype 
(De Gelder et al. 2007; Wein et al. 2019). Notably, 90.91% 
(20/22) of the detected ARGs were associated with 
MGEs, including integrons and transposons. For exam-
ple, integron In610 carried cmlA1, arr-3, and blaOXA-10, 
while transposon Tn602 harbored blaCTX-M-65  (Fig.  3A, 
B). These findings underscore the critical role of MGEs 
in facilitating horizontal gene transfer and the dissemina-
tion of resistance genes among bacterial populations (Jia 
et al. 2023), amplifying the threat of multidrug resistance 
in poultry production. Besides, our findings also suggest 
that ARG functional categories do not strictly correspond 
to specific MGE types. For example, aminoglycoside 
resistance genes  aac(3)-Id  and  aadA7  were distributed 
across distinct integrons (In498 and In610), and the sul-
fonamide resistance gene sul1 was detected in both In610 
and Tn6292.

Virulence synergy beyond genomic predictions
Embryo lethality assays revealed unexpected patho-
genic synergy: coinfection strains S–S (S. Indiana) and 

S-Li (S. Kentucky) caused 100% mortality within 72 
h, exceeding clinical S. Enteritidis (90%) and S. Pullo-
rum (80%) controls (Fig. 4). Paradoxically, both serovars 
showed incomplete virulence gene profiles—S. Indiana 
lacked adhesion-related lpf/ratB operons, while S. Ken-
tucky had lost sopD2, a critical T3SS effector (Fig. S1). 
We propose two compensatory mechanisms: 1) cdtB-
mediated immunosuppression by S. Indiana, enabling 
systemic invasion by S. Kentucky; 2) metabolic cross-
feeding through biofilm-associated nutrient exchange, as 
observed in polymicrobial Salmonella-E. coli communi-
ties. The reduced lethality of plasmid-free S–H (60%) fur-
ther implicates mobile elements in virulence modulation, 
suggesting plasmid-borne factors may enhance patho-
genicity through yet uncharacterized mechanisms. Fur-
ther research on compensation mechanisms is needed in 
the future.

Implications for poultry health management
These findings necessitate urgent reforms in avian dis-
ease control strategies. The zoonotic potential of these 

Fig. 1  Antimicrobial resistance of the studied Salmonella isolates. A Results of antimicrobial resistance to 13 antibiotics belonging to ten categories. 
Antibiotics in the same category are indicated by the same color. B Concordance (percentage) between phenotypic and genotypic antimicrobial 
resistance. Concordance (genotype positive/phenotype positive or genotype negative/phenotype negative); discordance (phenotype positive/
genotype negative or phenotype negative/genotype positive)
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MDR strains, coupled with plasmid-mediated resistance 
dissemination, underscores urgent One Health interven-
tions to prevent cross-species transmission and safeguard 
public health (Li et  al. 2022). First, the global detection 
of ST198/ST2040 clones in poultry (Coipan et  al. 2020; 
Mashe et  al. 2023) demands enhanced molecular sur-
veillance to track high-risk lineages (Wang et  al. 2025). 
Second, the absence of intestinal colonization challenges 
current fecal-centric diagnostics, requiring blood/tissue 

sampling protocols for acute mortality cases. Finally, 
the plasmid-chromosome resistance dichotomy sug-
gests tailored intervention approaches: plasmid-targeted 
containment (conjugation inhibitors) versus chromo-
somal resistance mitigation (phage therapy). Implement-
ing these measures require cross-sector collaboration 
between veterinary practitioners, microbiologists, and 
policymakers to curb the escalating threat of MDR Sal-
monella coinfections.

Conclusion
In this study, we report the first documented case of 
coinfection by S. Indiana and S. Kentucky, resulting in 
poultry mortality. The isolates exhibited extensive mul-
tidrug resistance mediated by a diverse array of ARGs 
and MGEs, including ESBL genes such as blaCTX-M-65, 
blaOXA-10, and blaCTX-M-14b. Additionally, their high 
virulence—demonstrated by 100% lethality in chicken 
embryos—was likely augmented by key virulence fac-
tors, notably the cdtB gene in S. Indiana. These findings 
emphasize the urgent need for enhanced biosecurity 
measures to mitigate the risks of such coinfections. Criti-
cal interventions include the adoption of segregated 
housing systems, routine monitoring, rapid pathogen 
detection, culling of infected flocks, and the imple-
mentation of robust antimicrobial stewardship pro-
grams (ASPs). These measures are essential not only for 
addressing the immediate threat posed by coinfections 
but also for supporting global One Health initiatives 
aimed at countering the growing crisis of antimicrobial 
resistance.

Methods
Patient history
In August 2022, on a farm with more than 1,000 origi-
nal silk chickens in Taihe County, Jiangxi Province, farm-
ers reported that 20 chickens were depressed and had a 
poor appetite, accompanied by the sudden death of one 
adult chicken. To determine the cause of the disease, 
dead chickens were sent to the Molecular Microbiology 
& Food Safety Laboratory at Zhejiang University for fur-
ther investigation.

Isolation and identification of Salmonella
The liver, spleen, heart, lung, brain, and intestinal con-
tents of the dead bird were sent for bacteriological 
examination. Samples collected aseptically from each 
organ were ground, diluted, and isolated according to 
GB4789.4–2016. First, pre-enrichment of all samples was 
performed in buffered peptone water (BPW) at 37°C for 
12 h. Second, the preenriched cultures were added to 
tetrathionate broth base (TTB) (1 mL of 0.1% brilliant 
green and 2  mL of 20% iodine solution were added to 

Fig. 2  Carriages of antimicrobial resistance genes (A), genomic 
mutations (B) and plasmid replicons (C) among the two serovars. 
White indicates ARGs, mutations or plasmids absent; gray indicates 
antimicrobial resistance genes, mutations or plasmids present 
in 100% of the samples
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Fig. 3  Colocalization of ARGs with transposons and integrons. A ARGs associated with integrons. B ARGs associated with transposons

Fig. 4  The virulence of the recovered Salmonella strains was examined via survival curves. Lethality of isolates, in this case, to chick SPF embryos. 
Strain S-S represents S. indiana, whereas strains S-Li and S-H represent S. kentucky. Salmonella Enteritidis P125109 and Salmonella Pullorum R51 were 
used as positive controls, n = 10
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100 mL TTB before use) for selective enrichment under 
the same conditions. Finally, each sample was isolated on 
xylose lysine deoxycholate (XLD) medium after 24 h at 
37°C. All three types of bacterial media were procured 
from Beijing Luqiao Technology Company. The isolates 
were identified through the matrix-assisted laser des-
orption/ionization-time-of-flight mass spectrometry 
(MALDI-TOF MS) technique (Bruker, Germany) as pre-
viously described.

Antimicrobial susceptibility test
Bacterial isolates were subjected to antimicrobial suscep-
tibility assessment via the broth microdilution method, 
as mentioned previously (An et  al. 2025). A total of 13 
antibiotics from 10 categories were selected for the test-
ing process, including ampicillin (AMP), amoxicillin and 
clavulanate potassium (AMC), gentamicin (GEN), kana-
mycin (KAN), tetracycline (TET), ciprofloxacin (CIP), 
nalidixic (NAL), chloramphenicol (CHL), ceftriaxone 
sodium (CRO), cefoxitin sodium (CX), trimethoprim and 
sulfamethoxazole (SXT), azithromycin (AZI), and imipe-
nem (IMP). The concentration range refers to previous 
papers published by our laboratory (Jiang et  al. 2019). 
The results were interpreted on the basis of the Clinical 
and Laboratory Standards Institute standards guidelines 
(CLSI, 2022). Salmonella isolates resistant to more than 
three classes of antimicrobials were defined as multid-
rug-resistant isolates.

DNA extraction and whole‑genome sequencing
The genomic DNA of three purified Salmonella isolates 
was extracted via the FastPure Bacterial DNA Isolation 
Kit (Vazyme, China) according to the manufacturer’s 
instructions and assayed for concentration and purity by 
a Nanodrop 1000 instrument (Thermo, USA). Genomic 
DNA of acceptable quality was sequenced by Novogene 
(Beijing, China) on an Illumina NovaSeq 6000 platform.

Bioinformatic analysis
The raw data were subjected to a quality check with the 
FastQC toolkit V.  0.12.1 (Leggett et  al. 2013), while the 
adaptor was removed via Trimmomatic (Bolger et  al. 
2014). The genome was subsequently assembled via 
SPAdes V. 3.12.0 with default parameters (Antipov et al. 
2016), the serovar of the isolates was subsequently pre-
dicted via SISTR V.  1.1.1 (Yoshida et  al. 2016), and the 
STs were analyzed via MLST V. 2.22.0. The detection of 
ARGs, virulence factors, and plasmids was performed 
via ABRicate V. 1.0.1 against ResFinder v4.0, VFDB, and 
PlasmidFinder V.  2.1.1, respectively, while the scan of 
point mutations was conducted via Staramr software 
against PointFinder V.1.9 (Bharat et al. 2022).

Chicken embryo lethality assay
Specific pathogen-free (SPF) embryos were obtained 
from Zhejiang Lihua Agricultural Technology Co., Ltd. 
The eggs were incubated in an autorotating egg incu-
bator for 11 d at 37.8 °C and 60–65% relative humid-
ity. Individual colonies of Salmonella were selected in 
Luria–Bertani medium and incubated overnight at 37°C 
on a shaker at 220 rpm. The bacterial mixture was subse-
quently transferred to fresh Luria–Bertani medium and 
incubated for 2–2.5 h at a dilution ratio of 1:33, ensuring 
that the optical density (OD) was registered at OD600 = 
0.1. The Salmonella suspension was then further diluted, 
adjusting the concentration of the inoculum to 5 × 103 
colony-forming units per milliliter. Finally, a precise vol-
ume of 200 µL from the bacterial mixture was delicately 
introduced into 16-day-old SPF embryos. The eggs were 
allowed to warm daily to monitor mortality for up to 6 d.
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