- Review
- Open access
- Published:
Functional immunopeptides: advancing prevention and therapeutic strategies against animal diseases
Animal Diseases volume 5, Article number: 16 (2025)
Abstract
Peptide-based therapies have emerged as groundbreaking advancements in both therapeutic and preventive strategies against infectious diseases. These approaches utilize innovative functional immunopeptides—such as antigenic peptides, antimicrobial, immune modulation, and delivery peptides derived from pathogens or hosts—to target specific immune mechanisms. In addition to their simplicity of use, peptide-based approaches provide several advantages. These include improved specificity and immunogenicity by targeting specific antigenic peptides and enhanced delivery of particular proteins or vaccines to targeted immune cells, which increases the efficiency of antigen presentation and provides a self-adjuvant effect and therapeutic properties. The most recent developments in peptide-based systems to increase vaccine efficacy and therapeutic interventions for animal diseases are investigated in this review. It encompasses fundamental ideas, immunomodulating functions, and peptide production techniques. Additionally, the improvements and synergistic advantages attained by combining these functional immunopeptides with vaccines or using them as stand-alone therapeutic agents are emphasized. This review demonstrates how peptide-based treatments in veterinary medicine enhance immune responses and inhibit or eliminate pathogens.
Introduction
Recent advancements in vaccination technology have enabled novel approaches, such as nanoparticles and functional immunopeptides. Composed of short amino acid sequences, these functional immunopeptides enhance vaccine efficacy and act as therapeutic agents against pathogens. Antigenic peptides, antimicrobial peptides, immune modulation peptides, and delivery peptides are among the several varieties they fall into (Fig. 1). The distinct functions and features of several types of functional immunopeptides are displayed in Table 1. By focusing the immune response on specific epitopes, optimizing antigen delivery, targeting particular immune cell receptors, and fostering immunostimulant effects, this approach seeks to inhibit particular pathogens and improve vaccination efficacy (Hamley 2022; Malonis et al. 2020).
Antigenic peptides are short protein segments that can bind to antibodies, stimulate an immune response, and be identified by immune cells, especially B cells and T cells (Lund et al. 2013; Parker et al. 1995). Antigenic peptides play an important role in vaccine enhancement by acting as immunogenic stimulants that improve the immune response to specific antigens. These peptides vary in length and may incorporate epitopes capable of activating B cells, T cells, or both. Their versatility in design and ability to showcase multiple epitopes together help boost immune recognition and immunogenicity (Apte et al. 2016; Chen et al. 2020; Joshi et al. 2013; Zeigler et al. 2019).
Small peptides, known as antimicrobial peptides (AMPs), are key components of the innate immune system and offer wide-ranging protection against various microorganisms. AMPs, which are generally composed of 10 to 60 amino acids, demonstrate antimicrobial activity as effectively as conventional antibiotics do. The potential of these compounds to help reduce bacterial drug resistance makes them promising options for developing new peptide-based therapies in the future (Huan et al. 2020; Lei et al. 2019; X. Ma et al. 2024; Talapko et al. 2022). AMPs play a significant role in immune response modulation. They act as a link between the innate and adaptive immune systems by activating immune cells and promoting cytokine production and chemotaxis (Duarte-Mata & Salinas-Carmona 2023; Ganz 2003; Q.-Y. Zhang et al. 2021a, b, c).
Immune modulation peptides are specialized peptides that help activate specific immune responses. They are divided into ligand-conjugated peptides and adjuvant-like peptides. Ligand-conjugated peptides are utilized primarily to bind to specific pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and stimulators of interferon genes (STINGs) (Hamley 2022; T. Zhao et al. 2023). PRRs play a central role in the maturation of innate immune cells such as dendritic cells and macrophages. The maturation and activation of innate immune cells trigger the release of chemokines and proinflammatory cytokines, which, in turn, stimulate other immune cells, such as T cells and B cells, ultimately fostering adjuvant effects. Adjuvant-like peptides can function as immunostimulants without being conjugated to specific ligands. Like traditional adjuvants, they directly stimulate TLRs and boost immune responses through multiple mechanisms, such as creating an antigen depot, activating innate immunity, and costimulating immune cells (Azmi et al. 2014).
Delivery peptides are short sequences of amino acids that can be attached to a specific site or receptor on immune cell surfaces to promote antigen or transported protein uptake. This feature allows the delivery of peptides to deliver a drug, protein, or vaccine to the target cell by binding to specific APC membrane receptors (targeting peptides) or directly penetrating the antigen-presenting cell (APC) membranes (cell-penetrating peptides) (Melgoza-González et al. 2023; Todaro et al. 2023). In addition, targeting peptides can also inhibit pathogen attachment and entry sites by binding to specific receptors (Deng et al. 2023). Peptides that target specific receptors or surface markers in immune cells have been developed and may bind to specific receptors, including those that target CD45 and CD8 (T cells), CD11b and CD163 (dendritic cells and macrophages), CD177 and GR-1 (neutrophils), CD16 and NK1.1 (NK cells), and others (Todaro et al. 2023; H. Yang et al. 2024). By targeting specific dendritic cell (DC) subsets or direct delivery through membrane penetration, Major histocompatibility complex (MHC) class I and II presentation is enhanced, antigen uptake is improved, and a strong CD8+ and CD4+ T-cell response is elicited.
Vaccines incorporating ligand-conjugated or adjuvant-like peptides exhibit self-adjuvanting properties and enhanced immunogenicity. This leads to increased immunogenicity while also allowing for a dose-sparing effect and increased efficiency (Luchner et al. 2021; T. Zhao et al. 2023). Furthermore, the impact of ligand-conjugated peptides and targeting peptides on immune responses and vaccine immunogenicity is specific to the targeted cell and the types of receptors involved (Cifuentes-Rius et al. 2021; Matsuda et al. 2022). Recent innovative peptide strategies have shown potential in vaccine design and enhancement, particularly in the field of veterinary medicine. The focus of this review is to provide an in-depth understanding of recent peptide research and development in combination with vaccines and immunotherapies against animal infectious diseases. This review covers the characterization, generation methods, effects, stimulation of the immune response, and current status of implementation of this research.
Antigenic peptides
Antigenic peptides derived from pathogen-associated antigens function as critical immune response inducers through two primary mechanisms: MHC binding and epitope presentation. These peptides can induce a strong immune response by delivering antigenic sequences to immune cells or effectively binding to MHC molecules. This binding facilitates recognition by T cells, leading to the activation of both CD8+ and CD4+ T cells, thus promoting optimal immunogenicity (Malonis et al. 2020; Stephens et al. 2021). The most common antigenic peptide used in vaccine development for various animal diseases is an epitope-based peptide (Calis et al. 2013; W. Li et al. 2014; TopuzoĞullari et al. 2020).
Epitope-based vaccines are categorized by epitope type, including T-cell (CD8+/CD4+), linear B-cell, multiepitope, and conformational epitopes (Parvizpour et al. 2020). When developing subunit vaccines, identifying epitope-based peptides involves a methodical process that combines computational bioinformatics tools, immunoinformatics, and experimental validation (Fig. 2). This process begins by selecting target proteins from pathogens and then applying computational approaches to assess and predict B-cell and T-cell epitopes by analyzing their antigenicity and affinity for binding to MHC molecules. Epitopes can be selected on the basis of various criteria, such as comprehensive genome screening, sequence conservation, localization within cells, affinity for MHC binding, and antigen annotation (Michel-Todó et al. 2020). Moreover, various computational approaches (in silico methods), such as antigenicity testing, evaluating allergies and toxicity, analyzing sequence conservation, and examining transmembranes, can provide valuable insights for identifying the most effective epitopes (Uddin et al. 2022).
The antigenic peptide/protein expression system has been widely developed to obtain efficient production on a large scale and improve the stability and conformation of peptides. For example, with respect to the expression of the classical swine fever virus (CSFV) E2 protein, various expression systems with different optimizations have been investigated. Expressing the entire length of the CSFV E2 recombinant protein is difficult. However, some studies using expression systems, such as the Pseudorabies virus (PRV) viral vector and insect cell-baculovirus expression systems, successfully expressed the entire CSFV E2 protein (Sun et al. 2023; L. Yang et al. 2017). Other expression systems, such as insect cell-baculovirus, HEK293T cells, CHO cells, E. coli, and yeast extraction systems, also successfully expressed truncated E2 protein (Feng et al. 2020; D. Li et al. 2020; Y. Zhang et al. 2023a, b; Zhong et al. 2024; Zhou et al. 2011). Several modifications can be made to optimize protein expression. Feng modified the use of a Txnip promoter and a combination of 0.1 mM NADH and 0.1 mM ATP in the expression system of CHO transgenic mammalian cells (Feng et al. 2020). The modified results revealed a balance between viability cell density and production scale compared with the use of a common cytomegalovirus (CMV) promoter, which has lower productivity and low viable cell density, which is likely due to the production of cytotoxic antigenic proteins. Moreover, Yang successfully modified the insect cell–baculovirus expression system through vector modification by adding a melittin signal peptide to secrete proteins from insect cells and simplifying the purification process (L. Yang et al. 2017).
Foot-and-mouth disease virus (FMDV) VP1 protein can also be expressed via conventional expression systems such as E. coli, yeast, and insect cell-baculovirus expression systems (Kazemi et al. 2022; Le et al. 2024; X. Liu et al. 2017a, b; Mamabolo et al. 2020). Rao conducted research and successfully expressed the FMDV VP1 protein via a plant expression system in which Agrobacterium was inserted with a vector to infect sunn hemp plants (Rao et al. 2012). Plant expression systems for producing antigenic peptides/proteins in animal vaccines can produce plants with multiple functions, such as feed and vaccines, without further processing.
Vaccine development using epitope-based peptides for the treatment of animal diseases has shown varying levels of efficacy. T epitope-based vaccines primarily aim to improve cellular immunity by targeting specific T-cell responses, enhancing the generation of memory T cells, and ensuring long-lasting immunity. However, these vaccines may not always provide sufficient protection, as they do not induce neutralizing antibodies. On the other hand, B epitope-based vaccines focus on boosting humoral immunity by stimulating antibody formation and are particularly effective against infections where neutralizing antibodies are crucial. Nevertheless, they may not always generate the significant cellular immune responses necessary for eliminating intracellular infections (Blanco et al. 2013).
The incorporation of T and B-cell epitopes in vaccine formulations has achieved promising results in combating animal diseases. This method, known as multiepitope vaccination, can trigger both humoral and cellular immune responses, possibly enhancing the range of protection (Forner et al. 2021; Q. Li et al. 2023a, b). Multiple epitope approaches have been applied in FMDV vaccines. Researchers have reported that combining T and B-cell epitopes can significantly influence the immune response. They reported that peptides with a B-cell epitope placed at the N-terminus followed by the T-cell epitope were more effective at producing secondary antibodies and promoting Th1-type immunity. Furthermore, interest in multiepitope vaccines aimed at various animal diseases, such as goatpox, lumpy skin disease, and infectious bursal disease, is increasing (Dey et al. 2023; Kar et al. 2022; Long et al. 2023). Epitope-based vaccines provide several benefits, including improved safety, targeted immune responses to specific epitopes, and the potential to defend against various strains or serotypes of pathogens. Table 2 summarizes several studies related to antigenic peptides.
Immune modulation peptides
Immune modulation peptides, including ligand-conjugating peptides and adjuvant-like peptides, are designed to significantly improve immune responses, especially in combination with vaccines. Ligand-conjugating peptides are designed to be connected to receptor ligands to target specific PRRs. Receptor ligands, especially TLR agonists, act as potent adjuvants because of their ability to modulate the innate immune response (T. Zhao et al. 2023). TLR agonists have been used as potent adjuvants in vaccine formulations against infectious diseases. Studies have shown that CpG ODN (TLR agonist) can induce cellular and humoral immune responses, leading to reduced symptoms and increased survival rates against pathogens (Kayesh et al. 2023). Recently, studies have discovered adjuvant-like peptides that do not possess specific target receptors due to a lack of ligand or receptor agonists. However, these peptides have immunomodulatory effects similar to those of conventional adjuvants (Cai et al. 2014; C. Wang et al. 2008).
Compared with free ligand/agonist molecules, ligand-conjugated peptides have greater adjuvant effects. For example, TLR7 agonist‒nanoparticle conjugates have been shown to significantly increase the immune response, cellular uptake, and APC activation. Furthermore, viral challenge has shown good protection in mice against different strains of SARS-CoV- 2 (Hanagata 2017; Yin et al. 2023). Another study demonstrated that TLR agonists in combination with PLGA nanoparticles and the SAG1 protein of T. gondii increased the humoral response and cellular response (higher IL- 2, IFN-γ, and TNF-α levels), leading to a reduction in the number of brain cysts in mice after oral challenge (Allahyari et al. 2022).
Immune modulation peptides have been developed to induce improved innate immune responses in combination with vaccines against several animal and zoonotic diseases. The data concerning recent immune modulation peptides in the veterinary field are shown in Table 3. Immune modulation peptides and targeting peptides can together generate immunomodulatory effects and amplify antigen presentation and processing. This combination may result in the maturation and activation of APCs, the synthesis of proinflammatory cytokines, and an increase in costimulatory molecules. Furthermore, it augments both humoral and cellular immune responses. Collectively, these effects form a potent integration that enhances the immunogenicity and precise targeting of vaccines (Fig. 3) (Luchner et al. 2021; Reed et al. 2013).
Like antigenic peptides, immune modulation peptides utilize multiple techniques to produce functional peptides or proteins. The E. coli expression system is the most frequently used method. This system is designed to achieve a high protein yield through a simple purification process, effectively characterizing peptide or protein expression results. Some research indicates that this expression system often needs optimization, particularly when insoluble peptides or proteins are expressed. To increase solubility, facilitate coassembly, and aid in refolding, additional protocols, which may include the application of a lysis buffer (8 M urea, 100 mM NaH2PO4, 5 mM tris (2-carboxyethyl) phosphine (TCEP), 5% glycerol, 20 mM Tris, pH 8.0), are essential (González-Stegmaier et al. 2021; Kaba et al. 2018; Karch et al. 2017; J. Li et al. 2018a, b; Qian et al. 2015; Rao et al. 2012; Xiong et al. 2015). Moreover, several studies have indicated the use of a combination of other systems, such as that conducted by Al-Halifa, which employed solid-phase peptide synthesis (SPPS) in conjunction with HCTU (Al-Halifa et al. 2020). High-performance liquid chromatography (HPLC) was utilized in the purification process. The chimeric M2e peptide produced through this expression process exhibited better characterization and conformation. Xu successfully produced thymosin α−1 via the Lactobacillus plantarum bacterial expression method (Xu et al. 2015). This technique allows for the production of peptides with enhanced immunogenicity. These findings underscore the synergistic potential of immune modulation peptides in vaccine design, which will be further explored in the context of delivery systems.
Delivery peptides
Targeting peptides/polypeptides
Targeting peptides/polypeptides are biomolecules engineered to bind specific receptors/antigens, enabling precise therapeutic intervention. Targeting peptides exhibit high specificity and selectivity for their target proteins (antigen uptake), minimizing off-target effects and reducing potential side effects (Rossino et al. 2023; Todaro et al. 2023). The small size of the targeting peptides and polypeptides enhances their ability to penetrate tissues and disperse across the body more effectively. Additionally, their potential for chemical modifications can increase their bioavailability and stability, addressing usual issues such as degradation and short half-life (M. Liu et al. 2021a, b).
Advanced techniques are utilized to carefully choose and develop peptides or polypeptides that are directed at specific targets. Techniques such as phage display are used swiftly to find optimal matches by using bacteriophages to screen target receptors (S. Ma et al. 2019; R. Ouyang et al. 2024). Alternative approaches, such as the use of yeast, mammalian expression systems (HEK293T cells and CHO cells), and bacterial expression systems (Lactobacillus plantarum and E. coli), can produce both molecules aimed at targeting and the receptors or proteins with which they bind (Y. Jiang et al. 2015; D. Li et al. 2020; Pastor et al. 2024; Zhu et al. 2023). Moreover, the use of computational design plays a crucial role in deciphering the interactions between these targeting peptides and their intended targets, significantly enhancing the efficiency and effectiveness of the process (Aloisio et al. 2021; Jefferson et al. 2023). Current studies have demonstrated notable advancements in the use of targeting peptides/polypeptides for the treatment of animal diseases. The primary application of these peptides/polypeptides in the field of veterinary medicine includes focusing on peptides that target antigen-presenting cells (APCs) and peptides aimed at various other cell membrane receptors (Fig. 4).
In a recent study, Xia successfully identified a new peptide known as HS (HSLRHDYGYPGH) that targets dendritic cells by using a phage-displayed peptide library (Xia et al. 2024). When this peptide was integrated into a recombinant Lactobacillus strain that expresses the VP60 capsid protein of rabbit hemorrhagic disease virus rabbit hemorrhagic disease virus (RDHV), this peptide significantly increased the ability of rabbit dendritic cells to capture RHDV and enhanced immune responses. In another study, introduced nanobody peptide conjugates (NPCs), which integrate PRRSV-specific nanobodies with peptides derived from CD163 receptors (Yang et al. 2024). These NPCs have shown great effectiveness against a variety of PRRSV strains by preventing viral proteins from attaching to CD163 receptors. Information on the latest advancements in targeting peptides for animal disease research can be found in Table 4.
Cell-penetrating peptides (CPPs)
CPPs are short peptide sequences consisting of fewer than 50 amino acids that can cross and internalize cell membranes through several mechanisms, including indirect endocytosis and direct entry. They can also transport various molecular cargoes (nanoparticles and liposomes), drugs, nucleic acids, and specific proteins or peptides into cells (Fig. 5). Recently, CPPs have been used in antitumor treatment, vaccine development, and gene therapy (Rádis-Baptista 2021; Robledo et al. 2023; H. Zhang et al. 2023a, b). In veterinary medicine, CPPs can be derived from animal viruses and used to develop certain vaccines against animal diseases.
Various methods can be used to acquire cell-penetrating peptides. These methods include computational design and screening, phage display with biopanning, and several strategies, including cyclic CPPs, glycosylated CPPs, chimeric CPPs, and D-form CPPs. The potential of natural sources such as venom, microbes, and plants to yield cell-penetrating peptides has also been explored (J et al. 2024; J. Ouyang et al. 2022; Park et al. 2023). Moreover, Adhikari successfully produced cell-penetrating peptides attached to protein cargoes via the E. coli expression system (Adhikari et al. 2018). The E. coli expression system is a potential method for CPP expression because of its good solubility; it does not require treatment with a refolding buffer or denaturant, facilitating production with high scalability and efficient purification (Kang et al. 2018; G. Zhang et al. 2021a, b, c).
The penetration mechanism of CPPs remains unclear. However, the mechanism is divided into direct penetration and endocytosis. Direct penetration occurs when peptides cross the plasma membrane without requiring energy. This can occur through pore formation, inverted micelle formation, or the carpet model. Uptake via endocytosis encompasses many routes, including macropinocytosis, caveolae-mediated endocytosis, and clathrin-mediated endocytosis (Madani et al. 2011). CPPs have shown the capacity to augment immunogenicity when integrated with nanoparticles, nucleotides, drugs, and proteins and to improve targeted delivery and cellular absorption, potentially resulting in more robust immune responses. Moreover, CPPs accumulate more in antigen-presenting cells, thereby increasing T-cell priming and activation in vivo. These improvements are confirmed by significant increases in CD8+ T-cell responses following immunization with antigens conjugated to CPPs (Backlund et al. 2022; Gessner & Neundorf 2020).
While preserving the biological activity of the nucleotides, CPP-conjugated siRNA has showed an extraordinary increase in distribution efficiency. This improved delivery could promote stronger immune responses against particular antigens, resulting in more successful gene silencing (Zhang et al. 2021a, b, c). By facilitating the transport of impermeable chemicals across cell membranes, CPPs also increase the bioavailability and therapeutic effectiveness of certain drugs. Therefore, this mechanism could improve drug accumulation at some locations and increase their immunogenicity (Backlund et al. 2022; Trabulo et al. 2010). The information regarding the application of CPPs in veterinary medicine is presented in Table 5.
Antimicrobial peptides
Small peptides known as antimicrobial peptides (AMPs) play a significant role in the natural immunological reactions observed in many animals. Usually, these amphiphilic peptides are positively charged, and a relatively short chain length defines them. The broad spectrum of antimicrobial activity of AMPs—including bacteria, fungi, parasites, and viruses—positions them as interesting candidates for tackling the development of antibiotic resistance (Huan et al. 2020; Rodrigues et al. 2022; R. Zhang et al. 2022). The common approaches to generate AMPs are computational design and recombinant DNA technology with bacterial expression systems (Hao et al. 2024; Hong et al. 2019). Certain antimicrobial peptides, including β-defensins and LL-37, have also been effectively produced through the E. coli expression system (Z. Li et al. 2018a, b). Additionally, a study by Tai successfully generated TP4 AMP via a yeast expression system (Pichia pastoris) to scale up recombinant protein production (Tai et al. 2021) .
AMPs can trigger an immune response through various mechanisms. For example, LL-37 AMP binds to the FPR2 receptor to recruit immune cells. Additionally, hBD3 affects STAT1 phosphorylation in T cells, influencing signaling pathway modulation (Diamond et al. 2009; Duarte-Mata & Salinas-Carmona 2023; H. Li et al. 2023a, b). Furthermore, AMPs can activate and differentiate cells and neutralize endotoxins. Zhang reported that LL-37 AMP can recruit neutrophils, NK cells, and mast cells (Zhang et al. 2021a, b, c), whereas Diamond reported that both α- and β-defensins AMP can modulate cell recruitment and cytokine release (Diamond et al. 2009). The use of AMPs in veterinary medicine can be categorized depending on their source, whether they are of animal or nonanimal origin or utilized for animal treatment. Many AMPs have been found in domestic animals, livestock, and poultry, indicating their essential function in the immune defense system of these species against certain infections. AMPs act through diverse mechanisms: membrane disruption, intracellular targeting, ion sequestration, biofilm inhibition, immunomodulation, and synergy with antibiotics (Fig. 6) (Kumar et al. 2020; Zhang et al. 2021a, b, c). These benefits include better biocompatibility, lower host cell toxicity, and the potential to develop treatment plans tailored to various species (Rodrigues et al. 2022; Saeed et al. 2022; Valdez-Miramontes et al. 2021).
Moreover, the existence of AMPs in animals shows that these peptides have been developed to fight certain infections common to their surroundings efficiently. This evolutionary quality might provide a competitive edge against veterinary-related infections. In veterinary medicine, AMPs offer a possible substitute for traditional antibiotics. This strategy improves the health and output of livestock, hence supporting the sustainability of the world livestock sector and perhaps reducing antibiotic resistance (Kumar et al. 2020; Valdez-Miramontes et al. 2021). Table 6 shows the antimicrobial peptide data.
Conclusion and perspective
Functional immunopeptides mark a significant advancement in veterinary medicine for preventing and treating animal diseases. Peptides for antigenic, antibacterial, and immunological regulation and delivery have demonstrated remarkable potential in enhancing therapeutic treatments and vaccination efficacy. These peptide-based solutions provide extraordinary adaptability, better selectivity, increased immunogenicity, and stronger delivery capacity than conventional techniques do. Future advancements may involve integrated systems combining multiple peptides.
It is essential to highlight strategies that can amplify peptide conformation and structural integrity through certain modifications. These strategies include the introduction of disulfide bonds, thioamide bonds, or chemical cross-linking agents such as glutaraldehyde, carbodiimide, and transcarbamylase to effectively maintain the stability of peptides and reduce peptide degradation and cleavage by proteases (Alavarse et al. 2022; Bhardwaj et al. 2016; Habermann & Murphy 1996; A. Liu et al. 2021a, b). Moreover, replacing specific amino acids in the target peptide with unusual amino acids helps prevent protease detection and destruction of the peptide. For example, replacing L-amino acids with D-amino acids in short peptides can significantly increase peptide stability (Miller et al. 1995). Methylation of the N-terminus of peptides—substituting one or more NH groups in the peptide backbone with N-methyl groups—has also been shown to improve peptide stability (Linde et al. 2008). Owing to the reversible and irreversible unfolding of proteins that occurs during lyophilization, they can adopt conformations that are susceptible to degradation by proteolytic enzymes during storage. This method reduces the physiological qualities of proteins (Moorthy et al. 2015). The addition of cryoprotectants such as sucrose, glycerol, and alginate to lyophilizers greatly increases the storage duration of peptide fragments (Gorka et al. 2020; Karunnanithy et al. 2024; J. Li et al. 2024). The efficient construction of antimicrobial peptides is made possible by the coordinated production of certain peptides that selectively attach to cellular receptors and immunomodulatory peptides at the genomic level. Molecular connections, including SpyTag at one end, and delivery mechanisms, including SpyCatcher tags, help us to enable peptide‒protein interactions effectively. This strategy allows the use of synergistic benefits such as exact delivery, immune modulation, and direct antibacterial effects.
Through the development of artificial intelligence deep neural networks, researchers have been able to predict and design targeted peptides for receptors of interest, e.g., the UniPMT framework developed by Zhao is capable of predicting MHC and T-cell receptor (TCR)-binding peptides (Y. Zhao et al. 2025), and Kirsten Dietze-Schwonberg et al. have been able to predict peptides by predicting CD 8+ epitope peptides specific for Leishmania major in mice via the SYFPEITHI algorithm. The peptides targeted by computers have strong potential as vaccine candidates (Dietze-Schwonberg et al. 2017). Sun et al. analyzed PRRSV via NetMHCpan4.1, IEDB, Alphafold and other artificial intelligence software, and analyzed the structural proteins of the PRRSV NADC30-like strain, which are predicted to be functional peptides that can significantly stimulate the immune response of B and T cells, and introduced the SpyCatcher system to display this antigenic protein on the surface of the nanoparticles to demonstrate good immunogenicity and protection in vitro and in vivo experiments (Sun et al. 2025). The above strategies will help address the current limitations in protein stability, bioavailability, immunogenicity, and cellular uptake while providing more targeted and effective therapeutic strategies.
The ability to scale up production and maintain cost-effectiveness will become increasingly important. Ensuring the economic viability of peptide-based techniques for broad use in veterinary practice will depend on developments in production technology, especially enhanced recombinant expression systems. Investigating emerging diseases also offers a great opportunity. For instance, the ASFV has caused significant harm to the worldwide swine industry. Although no vaccine has yet been developed against the virus, researchers can identify conserved peptides of ASFV antigenic proteins, e.g., by screening and analyzing monoclonals capable of target-binding ASFV E184L antigenic proteins, Tesfagaber reported that two of the linear epitopes of the E184L antibody (119IQRQGFL125 and 153DPTEFF158) are highly conserved among different ASFV isolates (Tesfagaber et al. 2024). The development of a subunit vaccine targeting this conserved peptide will provide new insights into solutions for the clearance of this virus. Additionally, for highly pathogenic avian influenza (HPAI), a zoonotic disease that poses a serious threat to global public health, studies have been conducted to develop nanovaccines on the basis of the immunogenic epitope of the extracellular domain of the matrix protein 2 of influenza A viruses (M2e) (Al-Halifa et al. 2020). Since this M2e peptide is highly conserved among different influenza A virus strains, coupling this peptide in fibrous nanoparticles capable of self-assembly can trigger a strong immune response in model mice.
With the emergence of new animal pathogens, including zoonotic diseases that pose a risk to both animal and human health, and the evolution of existing pathogens, peptide-based strategies that utilize the flexibility and specificity of peptides to develop innovative preventive and therapeutic approaches for animal diseases deserve more extensive investigation to ultimately address emerging threats.
Data availability
Not applicable.
References
Adhikari, S., T.I. Alahmadi, Z. Gong, and A.J. Karlsson. 2018. Expression of cell-penetrating peptides fused to protein cargo. Journal of Molecular Microbiology and Biotechnology 28 (4): 159–168. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000494084.
Aggarwal, S., V.K. Somani, S. Gupta, R. Garg, and R. Bhatnagar. 2019. Development of a novel multiepitope chimeric vaccine against anthrax. Medical Microbiology and Immunology 208 (2): 185–195. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00430-019-00577-x.
Ahmed, S., M.N. Rahman, M. Hasan, M.A. Hasan, and M.M. Mia. 2023. Immunogenic multiepitope-based vaccine development to combat cyclosporiasis of immunocompromised patients applying computational biology method. Experimental Parasitology 248: 108497. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.exppara.2023.108497.
Alahyaribeik, S., and M. Nazarpour. 2024. Peptide recovery from chicken feather keratin and their anti-biofilm properties against methicillin-resistant Staphylococcus aureus (MRSA). World Journal of Microbiology & Biotechnology 40 (4): 123. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11274-024-03921-3.
Alavarse, A.C., E.C.G. Frachini, R.L.C.G. da Silva, V.H. Lima, A. Shavandi, and D.F.S. Petri. 2022. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. International Journal of Biological Macromolecules 202: 558–596. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijbiomac.2022.01.029.
Al-Halifa, S., X. Zottig, M. Babych, M. Côté-Cyr, S. Bourgault, and D. Archambault. 2020. Harnessing the activation of toll-like receptor 2/6 by self-assembled cross-β fibrils to design adjuvanted nanovaccines. Nanomaterials (Basel, Switzerland) 10 (10): 1981. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/nano10101981.
Allahyari, M., M. Golkar, P. Fard-Esfahani, I. Dimier-Poisson, and M.-N. Mévélec. 2022. Codelivery of PLGA nanoparticles loaded with rSAG1 antigen and TLR ligands: An efficient vaccine against chronic toxoplasmosis. Microbial Pathogenesis 162: 105312. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.micpath.2021.105312.
Aloisio, A., N. Nisticò, S. Mimmi, D. Maisano, E. Vecchio, G. Fiume, E. Iaccino, and I. Quinto. 2021. Phage-displayed peptides for targeting tyrosine kinase membrane receptors in cancer therapy. Viruses 13 (4): 649. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/v13040649.
Apte, S.H., R.J. Stephenson, P. Simerska, P.L. Groves, S. Aljohani, S. Eskandari, I. Toth, and D.L. Doolan. 2016. Systematic evaluation of self-adjuvanting lipopeptide nanovaccine platforms for the induction of potent CD8(+) T-cell responses. Nanomedicine (London, England) 11 (2): 137–152. https://doiorg.publicaciones.saludcastillayleon.es/10.2217/nnm.15.184.
Aziz, S., Almajhdi, F. N., Waqas, M., Ullah, I., Salim, M. A., Khan, N. A., & Ali, A. (2022). Contriving multiepitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Frontiers in Immunology, 13. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2022.1004804
Azmi, F., A.A.H. Ahmad Fuaad, M. Skwarczynski, and I. Toth. 2014. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines & Immunotherapeutics 10 (3): 778–796. https://doiorg.publicaciones.saludcastillayleon.es/10.4161/hv.27332.
Backlund, C.M., R.L. Holden, K.D. Moynihan, D. Garafola, C. Farquhar, N.K. Mehta, L. Maiorino, S. Pham, J.B. Iorgulescu, D.A. Reardon, et al. 2022. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Proceedings of the National Academy of Sciences 119 (32): e2204078119. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.2204078119.
Bao, R., Z. Ma, K. Stanford, T.A. McAllister, and Y.D. Niu. 2024. Antimicrobial activities of α-Helix and β-Sheet peptides against the major bovine respiratory disease agent, Mannheimia hemolytica. International Journal of Molecular Sciences 25 (8): 4164. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms25084164.
Bhardwaj, G., V.K. Mulligan, C.D. Bahl, J.M. Gilmore, P.J. Harvey, O. Cheneval, G.W. Buchko, S.V.S.R.K. Pulavarti, Q. Kaas, A. Eletsky, et al. 2016. Accurate de novo design of hyperstable constrained peptides. Nature 538 (7625): 329–335. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature19791.
Blanco, E., C. Cubillos, N. Moreno, J. Bárcena, B.G. De La Torre, D. Andreu, and F. Sobrino. 2013. B Epitope multiplicity and B/T epitope orientation influence immunogenicity of foot-and-mouth disease peptide vaccines. Clinical and Developmental Immunology 2013: 1–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2013/475960.
Cai, M., F. Zhu, H. Wu, and P. Shen. 2014. A new recombinant hybrid polypeptide and its immunologic adjuvant activity for inactivated infectious bursal disease vaccine. Biotechnology Letters 36 (7): 1431–1437. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10529-014-1499-0.
Calis, J.J.A., M. Maybeno, J.A. Greenbaum, D. Weiskopf, A.D. De Silva, A. Sette, C. KeÅŸmir, and B. Peters. 2013. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology 9 (10): e1003266. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pcbi.1003266.
Chang, C.-Y., I.-C. Cheng, Y.-C. Chang, P.-S. Tsai, S.-Y. Lai, Y.-L. Huang, C.-R. Jeng, V.F. Pang, and H.-W. Chang. 2019. Identification of neutralizing monoclonal antibodies targeting novel conformational epitopes of the porcine epidemic diarrhea virus spike protein. Scientific Reports 9 (1): 2529. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-019-39844-5.
Chen, X., J. Yang, L. Wang, and B. Liu. 2020. Personalized neoantigen vaccination with synthetic long peptides: Recent advances and future perspectives. Theranostics 10 (13): 6011–6023. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.38742.
Cifuentes-Rius, A., A. Desai, D. Yuen, A.P.R. Johnston, and N.H. Voelcker. 2021. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nature Nanotechnology 16 (1): 37–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41565-020-00810-2.
Cornejo, S., C. Barber, M. Thoresen, M. Lawrence, K.S. Seo, and A. Woolums. 2024. Synthetic antimicrobial peptides Bac-5, BMAP-28, and Syn-1 can inhibit bovine respiratory disease pathogens in vitro. Frontiers in Veterinary Science 11: 1430919. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fvets.2024.1430919.
Dassanayake, R.P., B.M. Atkinson, A.S. Mullis, S.M. Falkenberg, E.M. Nicholson, E. Casas, B. Narasimhan, and S.M.D. Bearson. 2021. Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates. Scientific Reports 11: 19276. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-98860-6.
Deng, Z., S. Zhang, M. Sun, H. Yang, Y. Lu, M. Wang, W. Fang, F. Shi, and F. He. 2023. Nanobodies against porcine CD163 as PRRSV broad inhibitor. International Journal of Biological Macromolecules 253 (Pt 7): 127493. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijbiomac.2023.127493.
Dey, J., S.R. Mahapatra, P.K. Singh, S.C. Prabhuswamimath, N. Misra, and M. Suar. 2023. Designing of multiepitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunologic Research 71 (4): 639–662. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12026-023-09374-4.
Diamond, G., N. Beckloff, A. Weinberg, and K.O. Kisich. 2009. The roles of antimicrobial peptides in innate host defense. Current Pharmaceutical Design 15 (21): 2377–2392. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/138161209788682325.
Dietze-Schwonberg, K., B. Grewe, S. Brosch, J. Kuharev, G. van Zandbergen, H.-G. Rammensee, S. Tenzer, and E. von Stebut. 2017. In silico prediction of Leishmania major-specific CD8+ epitopes. Experimental Dermatology 26 (9): 838–840. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/exd.13295.
Duarte-Mata, D.I., and M.C. Salinas-Carmona. 2023. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Frontiers in Immunology 14: 1119574. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2023.1119574.
Feng, L., L. Chen, J. Yun, and X. Cao. 2020. Expression of recombinant classical swine fever virus E2 glycoprotein by endogenous Txnip promoter in stable transgenic CHO cells. Engineering in Life Sciences 20 (8): 320–330. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/elsc.201900147.
Fogaça, A.C., I.C. Almeida, M.N. Eberlin, A.S. Tanaka, P. Bulet, and S. Daffre. 2006. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides 27 (4): 667–674. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.peptides.2005.07.013.
Forner, M., R. Cañas-Arranz, S. Defaus, P. de León, M. RodrÃguez-Pulido, L. Ganges, E. Blanco, F. Sobrino, and D. Andreu. 2021. Peptide-based vaccines: foot-and-mouth disease virus, a paradigm in animal health. Vaccines 9 (5): 477. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/vaccines9050477.
Foroutan, M., F. Ghaffarifar, Z. Sharifi, and A. Dalimi. 2020. Vaccination with a novel multiepitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T-cell responses in mice. Comparative Immunology, Microbiology and Infectious Diseases 69: 101413. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cimid.2020.101413.
Ganz, T. 2003. The role of antimicrobial peptides in innate immunity. Integrative and Comparative Biology 43 (2): 300–304. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/icb/43.2.300.
Gessner, I., & Neundorf, I. (2020). Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. International Journal of Molecular Sciences, 21(7), Article 7. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms21072536
González-Stegmaier, R., Peña, A., Villarroel-EspÃndola, F., Aguila, P., Oliver, C., MacLeod-Carey, D., Rozas-Serri, M., Enriquez, R., & Figueroa, J. (2021). Full recombinant flagellin B from Vibrio anguillarum (rFLA) and its recombinant D1 domain (rND1) promote a pro-inflammatory state and improve vaccination against P. salmonis in Atlantic salmon (S. salar). Developmental and Comparative Immunology, 117, 103988. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.dci.2020.103988
Gorka, M., D.A. Cherepanov, A.Y. Semenov, and J.H. Golbeck. 2020. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Critical Reviews in Biochemistry and Molecular Biology 55 (5): 425–468. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/10409238.2020.1810623.
Habermann, S.M., and K.P. Murphy. 1996. Energetics of hydrogen bonding in proteins: A model compound study. Protein Science 5 (7): 1229–1239. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/pro.5560050702.
Hamley, I.W. 2022. Peptides for Vaccine Development. ACS Applied Bio Materials 5 (3): 905–944. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/acsabm.1c01238.
Han, K., D. Zhao, Y. Liu, X. Huang, J. Yang, Q. Liu, F. An, and Y. Li. 2016. Design and evaluation of a polytope construct with multiple B and T epitopes against Tembusu virus infection in ducks. Research in Veterinary Science 104: 174–180. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.rvsc.2015.09.011.
Hanagata, N. 2017. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. International Journal of Nanomedicine 12: 515–531. https://doiorg.publicaciones.saludcastillayleon.es/10.2147/IJN.S114477.
Hao, S., W. Shi, L. Chen, T. Kong, B. Wang, S. Chen, and X. Guo. 2024. CATH-2-derived antimicrobial peptide inhibits multidrug-resistant Escherichia coli infection in chickens. Frontiers in Cellular and Infection Microbiology 14: 1390934. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fcimb.2024.1390934.
Hong, Y., A.D. Truong, J. Lee, K. Lee, G.-B. Kim, K.-N. Heo, H.S. Lillehoj, and Y.H. Hong. 2019. Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity. Asian-Australasian Journal of Animal Sciences 32 (7): 1052–1061. https://doiorg.publicaciones.saludcastillayleon.es/10.5713/ajas.18.0571.
Hou, J., Z. Liu, S. Cao, H. Wang, C. Jiang, M.A. Hussain, and S. Pang. 2018. Broad-spectrum antimicrobial activity and low cytotoxicity against human cells of a peptide derived from bovine αS1-casein. Molecules (Basel, Switzerland) 23 (5): 1220. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/molecules23051220.
Hu, G., Y. Miao, X. Luo, W. Chu, and Y. Fu. 2020. Identification of a novel cell-penetrating peptide derived from the capsid protein of chicken anemia virus and its application in gene delivery. Applied Microbiology and Biotechnology 104 (24): 10503–10513. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00253-020-10988-z.
Huan, Y., Q. Kong, H. Mou, and H. Yi. 2020. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Frontiers in Microbiology 11: 582779. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2020.582779.
J, L., J, H., Dr, P., Jjh, C., A, G., Bw, S., R, M., E, A., & S, A. (2024). Discovery of a new class of cell-penetrating peptides by novel phage display platform. Scientific Reports, 14(1). https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-024-64405-w
Jean, C., M. Boulianne, M. Britten, and G. Robitaille. 2016. Antimicrobial activity of buttermilk and lactoferrin peptide extracts on poultry pathogens. The Journal of Dairy Research 83 (4): 497–504. https://doiorg.publicaciones.saludcastillayleon.es/10.1017/S0022029916000637.
Jefferson, R.E., A. Oggier, A. Füglistaler, N. Camviel, M. Hijazi, A.R. Villarreal, C. Arber, and P. Barth. 2023. Computational design of dynamic receptor-peptide signaling complexes applied to chemotaxis. Nature Communications 14 (1): 2875. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-023-38491-9.
Jiang, Y., J. Hu, Y. Guo, W. Yang, L. Ye, C. Shi, Y. Liu, G. Yang, and C. Wang. 2015. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing HN of Newcastle disease virus and DC- targeting peptide fusion protein. Journal of Biotechnology 216: 82–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jbiotec.2015.09.033.
Jiang, N., P. Shrotriya, and R.P. Dassanayake. 2022. NK-lysin antimicrobial peptide-functionalized nanoporous alumina membranes as biosensors for label-free bacterial endotoxin detection. Biochemical and Biophysical Research Communications 636 (Pt 2): 18–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2022.10.097.
Jin, Y.-B., W.-T. Yang, C.-W. Shi, B. Feng, K.-Y. Huang, G.-X. Zhao, Q.-Y. Li, J. Xie, H.-B. Huang, Y.-L. Jiang, et al. 2018. Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets. Applied Microbiology and Biotechnology 102 (19): 8403–8417. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00253-018-9205-0.
Joshi, V.G., V.D. Dighe, D. Thakuria, Y.S. Malik, and S. Kumar. 2013. Multiple antigenic peptide (MAP): A synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian Journal of Virology: An Official Organ of Indian Virological Society 24 (3): 312–320. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s13337-013-0162-z.
Kaba, S.A., C.P. Karch, L. Seth, K.M.B. Ferlez, C.K. Storme, D.M. Pesavento, P.Y. Laughlin, E.S. Bergmann-Leitner, P. Burkhard, and D.E. Lanar. 2018. Self-assembling protein nanoparticles with built-in flagellin domains increases protective efficacy of a Plasmodium falciparum based vaccine. Vaccine 36 (6): 906–914. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vaccine.2017.12.001.
Kajiwara, N., N. Nomura, M. Ukaji, N. Yamamoto, M. Kohara, F. Yasui, Y. Sakoda, H. Kida, and F. Shibasaki. 2020. Cell-penetrating peptide-mediated cell entry of H5N1 highly pathogenic avian influenza virus. Scientific Reports 10 (1): 18008. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-020-74604-w.
Kang, Q., Z. Sun, Z. Zou, M. Wang, Q. Li, X. Hu, and N. Li. 2018. Cell-penetrating peptide-driven Cre recombination in porcine primary cells and generation of marker-free pigs. PLoS ONE 13 (1): e0190690. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0190690.
Kar, P.P., P.B. Araveti, A. Kuriakose, and A. Srivastava. 2022. Design of a multiepitope protein as a subunit vaccine against lumpy skin disease using an immunoinformatics approach. Scientific Reports 12 (1): 19411. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-022-23272-z.
Karch, C. P., Li, J., Kulangara, C., Paulillo, S. M., Raman, S. K., Emadi, S., Tan, A., Helal, Z. H., Fan, Q., Khan, M. I., & Burkhard, P. (2017). Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(1), 241–251. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.nano.2016.08.030
Karunnanithy, V., N.H.B. Abdul Rahman, N.A.H. Abdullah, M.B. Fauzi, Y. Lokanathan, A.N. Min Hwei, and M. Maarof. 2024. Effectiveness of lyoprotectants in protein stabilization during lyophilization. Pharmaceutics 16 (10): 1346. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pharmaceutics16101346.
Kathayat, D., G. Closs, Y.A. Helmy, D. Lokesh, S. Ranjit, and G. Rajashekara. 2021. Peptides affecting the outer membrane lipid asymmetry system (MlaA-OmpC/F) reduce avian pathogenic Escherichia coli (APEC) colonization in chickens. Applied and Environmental Microbiology 87 (17): e0056721. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/AEM.00567-21.
Kayesh, M.E.H., M. Kohara, and K. Tsukiyama-Kohara. 2023. TLR agonists as vaccine adjuvants in the prevention of viral infections: An overview. Frontiers in Microbiology 14: 1249718. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2023.1249718.
Kazemi, M., M.R. Aghamaali, R. Madani, T. Emami, and F. Golchinfar. 2022. Evaluating the immunogenicity of recombinant VP1 protein from the foot-and-mouth disease virus encapsulated in nanoliposome in guinea pig animal model. Veterinary Immunology and Immunopathology 253: 110497. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetimm.2022.110497.
Kim, J.-S., J.-H. Joeng, and Y. Kim. 2017. Design, characterization, and antimicrobial activity of a novel antimicrobial peptide derived from bovine lactophoricin. Journal of Microbiology and Biotechnology 27 (4): 759–767. https://doiorg.publicaciones.saludcastillayleon.es/10.4014/jmb.1609.09004.
Kopeikin, P.M., M.S. Zharkova, A.A. Kolobov, M.P. Smirnova, M.S. Sukhareva, E.S. Umnyakova, V.N. Kokryakov, D.S. Orlov, B.L. Milman, S.V. Balandin, et al. 2020. Caprine bactenecins as promising tools for developing new antimicrobial and antitumor drugs. Frontiers in Cellular and Infection Microbiology 10: 552905. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fcimb.2020.552905.
Kumar, R., S.A. Ali, S.K. Singh, V. Bhushan, M. Mathur, S. Jamwal, A.K. Mohanty, J.K. Kaushik, and S. Kumar. 2020. Antimicrobial peptides in farm animals: an updated review on its diversity, function, modes of action and therapeutic prospects. Veterinary Sciences 7 (4): 206. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/vetsci7040206.
Le, N.M.T., K.-K. Therefore, J. Chun, and D.-H. Kim. 2024. Expression of virus-like particles (VLPs) of foot-and-mouth disease virus (FMDV) using Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 108 (1): 81. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00253-023-12902-9.
Lei, J., L. Sun, S. Huang, C. Zhu, P. Li, J. He, V. Mackey, D.H. Coy, and Q. He. 2019. The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research 11 (7): 3919–3931. https://pmc.ncbi.nlm.nih.gov/articles/PMC6684887/.
Li, W., M.D. Joshi, S. Singhania, K.H. Ramsey, and A.K. Murthy. 2014. Peptide Vaccine: Progress and Challenges. Vaccines 2 (3): 515–536. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/vaccines2030515.
Li, J., Z.H. Helal, C.P. Karch, N. Mishra, T. Girshick, A. Garmendia, P. Burkhard, and M.I. Khan. 2018a. A self-adjuvanted nanoparticle based vaccine against infectious bronchitis virus. PLoS ONE 13 (9): e0203771. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0203771.
Li, Z., Y. Hu, Y. Yang, Z. Lu, and Y. Wang. 2018b. Antimicrobial resistance in livestock: Antimicrobial peptides provide a new solution for a growing challenge. Animal Frontiers: The Review Magazine of Animal Agriculture 8 (2): 21–29. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/af/vfy005.
Li, D., J. Wu, J. Chen, D. Zhang, Y. Zhang, X. Qiao, X. Yu, Q. Zheng, and J. Hou. 2020. Optimized expression of classical swine fever virus E2 protein via combined strategy in Pichia pastoris. Protein Expression and Purification 167: 105527. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pep.2019.105527.
Li, H., J. Niu, X. Wang, M. Niu, and C. Liao. 2023a. The contribution of antimicrobial peptides to immune cell function: a review of recent advances. Pharmaceutics 15 (9): 2278. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pharmaceutics15092278.
Li, Q., A.K. Wubshet, Y. Wang, L. Heath, and J. Zhang. 2023b. B and T-cell epitopes of the incursionary foot-and-mouth disease virus serotype SAT2 for vaccine development. Viruses 15 (3): 797. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/v15030797.
Li, J., H. Wang, L. Wang, D. Yu, and X. Zhang. 2024. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. European Journal of Pharmaceutical Sciences 192: 106625. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejps.2023.106625.
Liang, W., G. Zhou, W. Liu, B. Yang, C. Li, H. Wang, D. Yang, W. Ma, and L. Yu. 2016. Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus. Archives of Virology 161 (10): 2705–2716. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00705-016-2984-7.
Ligtenberg, A. J. M., Bikker, F. J., & Bolscher, J. G. M. (2021). LFchimera: A synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 99(1), 128–137. https://doiorg.publicaciones.saludcastillayleon.es/10.1139/bcb-2020-0285
Linde, Y., O. Ovadia, E. Safrai, Z. Xiang, F.P. Portillo, D.E. Shalev, C. Haskell-Luevano, A. Hoffman, and C. Gilon. 2008. Structure-activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides. Peptide Science 90 (5): 671–682. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/bip.21057.
Liu, S., C. Tu, C. Wang, X. Yu, J. Wu, S. Guo, M. Shao, Q. Gong, Q. Zhu, and X. Kong. 2006a. The protective immune response induced by B-cell epitope of classical swine fever virus glycoprotein E2. Journal of Virological Methods 134 (1–2): 125–129. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jviromet.2005.12.008.
Liu, S., X. Yu, C. Wang, J. Wu, X. Kong, and C. Tu. 2006b. Quadruple antigenic epitope peptide producing immune protection against classical swine fever virus. Vaccine 24 (49–50): 7175–7180. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vaccine.2006.06.042.
Liu, W., B. Yang, M. Wang, H. Wang, D. Yang, W. Ma, G. Zhou, and L. Yu. 2017a. Identification of a conformational neutralizing epitope on the VP1 protein of type A foot-and-mouth disease virus. Research in Veterinary Science 115: 374–381. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.rvsc.2017.07.001.
Liu, X., J. Lv, Y. Fang, P. Zhou, Y. Lu, L. Pan, Z. Zhang, J. Ma, Y. Zhang, and Y. Wang. 2017b. Expression and immunogenicity of two recombinant fusion proteins comprising foot-and-mouth disease virus structural protein VP1 and DC-SIGN-binding glycoproteins. BioMed Research International 2017: 7658970. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2017/7658970.
Liu, A., P.H. Krushnamurthy, K.S. Subramanya, D.A. Mitchell, and N. Mahanta. 2021a. Enzymatic thioamidation of peptide backbones. Methods in Enzymology 656: 459–494. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/bs.mie.2021.04.010.
Liu, M., X. Fang, Y. Yang, and C. Wang. 2021b. Peptide-enabled targeted delivery systems for therapeutic applications. Frontiers in Bioengineering and Biotechnology 9: 701504. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fbioe.2021.701504.
Liu, R., Z. Liu, H. Peng, Y. Lv, Y. Feng, J. Kang, N. Lu, R. Ma, S. Hou, W. Sun, et al. 2022a. Bomidin: An optimized antimicrobial peptide with broad antiviral activity against enveloped viruses. Frontiers in Immunology 13: 851642. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2022.851642.
Liu, Z.-H., Z.-F. Deng, Y. Lu, W.-H. Fang, and F. He. 2022b. A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. Journal of Nanobiotechnology 20 (1): 493. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12951-022-01710-4.
Liu, X., X. Wang, X. Shi, S. Wang, and K. Shao. 2024. The immune enhancing effect of antimicrobial peptide LLv on broilers chickens. Poultry Science 103 (2): 103235. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.psj.2023.103235.
Long, Q., M. Wei, Y. Wang, and F. Pang. 2023. Design of a multiepitope vaccine against goatpox virus using an immunoinformatics approach. Frontiers in Cellular and Infection Microbiology 13: 1309096. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fcimb.2023.1309096.
Luchner, M., S. Reinke, and A. Milicic. 2021. TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics 13 (2): 142. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pharmaceutics13020142.
Lund, O., E. Karosiene, C. Lundegaard, M.V. Larsen, and M. Nielsen. 2013. Bioinformatics Identification of Antigenic Peptide: Predicting the Specificity of Major MHC Class I and II Pathway Players. 960: 247–260. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/978-1-62703-218-6_19.
Ma, S., X. Qiao, Y. Xu, L. Wang, H. Zhou, Y. Jiang, W. Cui, X. Huang, X. Wang, L. Tang, et al. 2019. Screening and identification of a chicken dendritic cell binding peptide by using a phage display library. Frontiers in Immunology 10: 1853. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2019.01853.
Ma, X., Z. Chen, and M. Long. 2024. Mechanisms of action, biological characteristics, and future prospects: A review of antimicrobial peptides (a review). Applied Biochemistry and Microbiology. https://doiorg.publicaciones.saludcastillayleon.es/10.1134/S0003683823603104.
Madani, F., S. Lindberg, Ü. Langel, S. Futaki, and A. Gräslund. 2011. Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophysics 2011 (1): 414729. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2011/414729.
Mahmoud, M.M., A.M. Al-Hejin, T.S. Abujamel, A.M. Ghetas, and H.A. Yacoub. 2023. Chicken β-defensin-1 peptide as a candidate anticoccidial agent in broiler chickens. Animal Biotechnology 34 (7): 3108–3125. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/10495398.2022.2136677.
Malonis, R.J., J.R. Lai, and O. Vergnolle. 2020. Peptide-based vaccines: current progress and future challenges. Chemical Reviews 120 (6): 3210–3229. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/acs.chemrev.9b00472.
Mamabolo, M.V., J. Theron, F. Maree, and M. Crampton. 2020. Production of foot-and-mouth disease virus SAT2 VP1 protein. AMB Express 10 (1): 2. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13568-019-0938-7.
Marques-Bastos, S.L.S., M.L.V. Coelho, I.N. de Sousa Santos, D.S.A. Moreno, E.S. Barrias, J.F.M. de Mendonça, L.C. Mendonça, C.C. Lange, M.A.V. de Paiva Brito, and do Carmo de Freire Bastos, M. 2022. Effects of the natural antimicrobial peptide aureocin A53 on cells of Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis in the excised teat model. World Journal of Microbiology & Biotechnology 39 (1): 5. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11274-022-03443-w.
Matsuda, T., Misato, K., Tamiya, S., Akeda, Y., Nakase, I., Kuroda, E., Takahama, S., Nonaka, M., Yamamoto, T., Fukuda, M. N., et al. (2022). Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. iScience, 25(11). https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.isci.2022.105324
Melgoza-González, E.A., L. Bustamante-Córdova, and J. Hernández. 2023. Recent advances in antigen targeting to antigen-presenting cells in veterinary medicine. Frontiers in Immunology 14: 1080238. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2023.1080238.
Michel-Todó, L., P. Bigey, P.A. Reche, M.-J. Pinazo, J. Gascón, and J. Alonso-Padilla. 2020. Design of an epitope-based vaccine ensemble for animal trypanosomiasis by computational methods. Vaccines 8 (1): 130. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/vaccines8010130.
Mingfu, N., G. Qiang, L. Yang, H. Ying, L. Chengshui, and Q. Cuili. 2023. The antimicrobial peptide MetchnikowinII enhances Ptfa antigen immune responses against avian Pasteurella multocida in chickens. The Journal of Veterinary Medical Science 85 (9): 964–971. https://doiorg.publicaciones.saludcastillayleon.es/10.1292/jvms.22-0579.
Moorthy, B.S., L.K. Iyer, and E.M. Topp. 2015. Characterizing protein structure, dynamics and conformation in lyophilized solids. Current Pharmaceutical Design 21 (40): 5845–5853. https://www.ingentaconnect.com/content/ben/cpd/2015/00000021/00000040/art00008.
Miller, S.M., R. J. Simon, S. Ng, R. N. Zuckermann, J. M. Kerr, & W. H. Moos. 1995. Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Development Research 35:20–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/ddr.430350105.
Mustafa, G., Mahrosh, H. S., Salman, M., Ali, M., Arif, R., Ahmed, S., & Ebaid, H. (2023). In silico analysis of honey bee peptides as potential inhibitors of capripoxvirus DNA-directed RNA polymerase. Animals: An Open Access Journal from MDPI, 13(14), 2281. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani13142281
Niu, Y., Y. Liu, L. Yang, H. Qu, J. Zhao, R. Hu, J. Li, and W. Liu. 2016. Immunogenicity of multiepitope-based vaccine candidates administered with the adjuvant Gp96 against rabies. Virologica Sinica 31 (2): 168–175. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12250-016-3734-4.
Ouyang, J., Y. Sheng, and W. Wang. 2022. Recent advances of studies on cell-penetrating peptides based on molecular dynamics simulations. Cells 11 (24): 4016. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/cells11244016.
Ouyang, R., V. Ongenae, A. Muok, D. Claessen, and A. Briegel. 2024. Phage fibers and spikes: A nanoscale Swiss army knife for host infection. Current Opinion in Microbiology 77: 102429. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.mib.2024.102429.
Park, H., J.-H. Park, M.S. Kim, K. Cho, and J.-M. Shin. 2023. In silico screening and optimization of cell-penetrating peptides using deep learning methods. Biomolecules 13 (3): 522. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biom13030522.
Parker, K.C., M. Shields, M. DiBrino, A. Brooks, and J.E. Coligan. 1995. Peptide binding to MHC class I molecules: Implications for antigenic peptide prediction. Immunologic Research 14 (1): 34–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/BF02918496.
Parvizpour, S., M.M. Pourseif, J. Razmara, M.A. Rafi, and Y. Omidi. 2020. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discovery Today 25 (6): 1034–1042. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.drudis.2020.03.006.
Pastor, Y., O. Reynard, M. Iampietro, M. Surenaud, F. Picard, N. El Jahrani, C. Lefebvre, A. Hammoudi, L. Dupaty, É. Brisebard, et al. 2024. A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease. Cell Reports. Medicine 5 (3): 101467. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.xcrm.2024.101467.
Pimchan, T., F. Tian, K. Thumanu, S. Rodtong, and J. Yongsawatdigul. 2023. Isolation, identification, and mode of action of antibacterial peptides derived from egg yolk hydrolysate. Poultry Science 102 (7): 102695. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.psj.2023.102695.
Popitool, K., Wataradee, S., Wichai, T., Noitang, S., Ajariyakhajorn, K., Charoenrat, T., Boonyaratanakornkit, V., & Sooksai, S. (2022). Potential of Pm11 antimicrobial peptide against bovine mastitis pathogens. American Journal of Veterinary Research, 84(1), ajvr.22.06.0096. https://doiorg.publicaciones.saludcastillayleon.es/10.2460/ajvr.22.06.0096
Qian, F., A. Guo, M. Li, W. Liu, Z. Pan, L. Jiang, X. Wu, and H. Xu. 2015. Salmonella flagellin is a potent carrier-adjuvant for peptide conjugate to induce peptide-specific antibody response in mice. Vaccine 33 (17): 2038–2044. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vaccine.2015.03.006.
Rádis-Baptista, G. 2021. Cell-penetrating peptides derived from animal venoms and toxins. Toxins 13 (2): 147. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/toxins13020147.
Rajasekaran, G., S.D. Kumar, S. Yang, and S.Y. Shin. 2019. The design of a cell-selective fowlicidin-1-derived peptide with both antimicrobial and anti-inflammatory activities. European Journal of Medicinal Chemistry 182: 111623. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejmech.2019.111623.
Rani, N.A., T.B. Robin, A.A. Prome, N. Ahmed, A.T. Moin, R.B. Patil, M.N.A. Sikder, M.N.I. Bappy, D. Afrin, F.M.A. Hossain, et al. 2024. Development of multi epitope subunit vaccines against emerging carp viruses Cyprinid herpesvirus 1 and 3 using immunoinformatics approach. Scientific Reports 14 (1): 11783. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-024-61074-7.
Rao, J.P., P. Agrawal, R. Mohammad, S.K. Rao, G.R. Reddy, H.J. Dechamma, S. Suryanarayana, and V. V. 2012. Expression of VP1 protein of serotype A and O of foot-and-mouth disease virus in transgenic sunnhemp plants and its immunogenicity for guinea pigs. Acta Virologica 56 (02): 91–99. https://doiorg.publicaciones.saludcastillayleon.es/10.4149/av_2012_02_91.
Reed, S.G., M.T. Orr, and C.B. Fox. 2013. Key roles of adjuvants in modern vaccines. Nature Medicine 19 (12): 1597–1608. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nm.3409.
Rezaei, M., Rabbani-khorasgani, M., Zarkesh-Esfahani, S. H., Emamzadeh, R., & Abtahi, H. (n.d.). Prediction of the Omp16 Epitopes for the Development of an Epitope-based Vaccine Against Brucellosis. Infectious Disorders - Drug Targets, 19(1), 36–45. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/1871526518666180709121653
Robledo, S.M., S. Pérez-Silanes, C. Fernández-Rubio, A. Poveda, L. Monzote, V.M. González, P. Alonso-Collado, and J. Carrión. 2023. Neglected zoonotic diseases: advances in the development of cell-penetrating and antimicrobial peptides against leishmaniosis and chagas disease. Pathogens (Basel, Switzerland) 12 (7): 939. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pathogens12070939.
Rodrigues, G., L. Souza Santos, and O.L. Franco. 2022. Antimicrobial peptides controlling resistant bacteria in animal production. Frontiers in Microbiology 13: 874153. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2022.874153.
Roque-Borda, C.A., L.P. Pereira, E.A.L. Guastalli, N.M. Soares, P.A.B. Mac-Lean, D.D. Salgado, A.B. Meneguin, M. Chorilli, and E.F. Vicente. 2021a. HPMCP-coated microcapsules containing the Ctx (Ile21)-Ha antimicrobial peptide reduce the mortality rate caused by resistant Salmonella Enteritidis in laying hens. Antibiotics (Basel, Switzerland) 10 (6): 616. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/antibiotics10060616.
Roque-Borda, C.A., H.R.L. Silva, E. Crusca Junior, J.A. Serafim, A.B. Meneguin, M. Chorilli, W.C. Macedo, S.R. Teixeira, E.A.L. Guastalli, N.M. Soares, et al. 2021b. Alginate-based microparticles coated with HPMCP/AS cellulose-derivatives enable the Ctx (Ile21)-Ha antimicrobial peptide application as a feed additive. International Journal of Biological Macromolecules 183: 1236–1247. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijbiomac.2021.05.011.
Rossino, G., Marchese, E., Galli, G., Verde, F., Finizio, M., Serra, M., Linciano, P., & Collina, S. (2023). Peptides as therapeutic agents: Challenges and opportunities in the green transition Era. Molecules, 28(20), Article 20. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/molecules28207165
Ru, Y., R. Hao, C. Wu, Y. Li, B. Lu, H. Liu, H. Tian, D. Li, Z. Shi, J. Luo, et al. 2023. Identification of potential novel B-cell epitopes of capsid protein VP2 in Senecavirus A. Microbiology Spectrum 11 (4): e0447222. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/spectrum.04472-22.
Saeed, S. I., Mergani, A., Aklilu, E., & Kamaruzzaman, N. F. (2022). Antimicrobial peptides: Bringing solution to the rising threats of antimicrobial resistance in livestock. Frontiers in Veterinary Science, 9. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fvets.2022.851052
Sengkhui, S., N. Klubthawee, and R. Aunpad. 2023. A novel designed membrane-active peptide for the control of foodborne Salmonella enterica serovar Typhimurium. Scientific Reports 13 (1): 3507. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-023-30427-z.
Shen, S., Ren, F., He, J., Wang, J., Sun, Y., & Hu, J. (2023). Recombinant antimicrobial peptide OaBac5 mini alleviates inflammation in pullorum disease chicks by modulating TLR4/MyD88/NF-κB pathway. Animals: An Open Access Journal from MDPI, 13(9), 1515. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani13091515
Shi, S.-H., W.-T. Yang, G.-L. Yang, X.-K. Zhang, Y.-Y. Liu, L.-J. Zhang, L.-P. Ye, J.-T. Hu, X. Xing, C. Qi, et al. 2016. Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection. Virus Research 211: 46–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.virusres.2015.09.005.
Silva, F.D., D.C.P. Rossi, L.R. Martinez, S. Frases, F.L. Fonseca, C.B.L. Campos, M.L. Rodrigues, J.D. Nosanchuk, and S. Daffre. 2011. Effects of microplusin, a copper-chelating antimicrobial peptide, against Cryptococcus neoformans. FEMS Microbiology Letters 324 (1): 64–72. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1574-6968.2011.02386.x.
Sitinjak, M.C., J.-K. Chen, and C.-Y. Wang. 2023. Characterization of novel cell-penetrating peptides derived from the capsid protein of beak and feather disease virus. Virus Research 330: 199109. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.virusres.2023.199109.
St Paul, M., J.T. Brisbin, N. Barjesteh, A.I. Villaneueva, P. Parvizi, L.R. Read, E. Nagy, and S. Sharif. 2014. Avian influenza virus vaccines containing Toll-like receptors 2 and 5 ligand adjuvants promote protective immune responses in chickens. Viral Immunology 27 (4): 160–166. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/vim.2013.0129.
Stephens, A.J., N.A. Burgess-Brown, and S. Jiang. 2021. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Frontiers in Immunology 12: 696791. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2021.696791.
Sun, Y., J. Qian, X. Xu, Y. Tang, W. Xu, W. Yang, Y. Jiang, G. Yang, Z. Ding, Y. Cong, et al. 2018. Dendritic cell-targeted recombinantLactobacilli induce DC activation and elicit specific immune responses against G57 genotype of avian H9N2 influenza virus infection. Veterinary Microbiology 223: 9–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetmic.2018.07.009.
Sun, Y., K. Liu, T. Yun, Z. Ni, Y. Zhu, L. Chen, H. Bao, W. Ye, J. Hua, S. Huo, et al. 2023. High expression of the classical swine fever virus (CSFV) envelope protein E2 by a single amino acid mutation and its embedded in the pseudorabies virus (PRV) vector for immunization. Virus Research 331: 199111. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.virusres.2023.199111.
Sun, Y., Y. Gao, T. Su, L. Zhang, H. Zhou, J. Zhang, H. Sun, J. Bai, and P. Jiang. 2025. Nanoparticle vaccine triggers interferon-gamma production and confers protective immunity against porcine reproductive and respiratory syndrome Virus. ACS Nano 19 (1): 852–870. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/acsnano.4c12212.
Tai, H.-M., M.-F. You, C.-H. Lin, T.-Y. Tsai, C.-Y. Pan, and J.-Y. Chen. 2021. Scale-up production of and dietary supplementation with the recombinant antimicrobial peptide tilapia piscidin 4 to improve growth performance in Gallus gallus domesticus. PLoS ONE 16 (6): e0253661. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0253661.
Takagi, S., Hayashi, S., Takahashi, K., Isogai, H., Bai, L., Yoneyama, H., Ando, T., Ito, K., & Isogai, E. (2012). Antimicrobial activity of a bovine myeloid antimicrobial peptide (BMAP-28) against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Animal Science Journal = Nihon Chikusan Gakkaiho, 83(6), 482–486. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1740-0929.2011.00979.x
Talapko, J., T. Meštrović, M. Juzbašić, M. Tomas, S. Erić, L. Horvat Aleksijević, S. Bekić, D. Schwarz, S. Matić, M. Neuberg, et al. 2022. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics (Basel, Switzerland) 11 (10): 1417. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/antibiotics11101417.
Tan, L., Y. Zhang, F. Liu, Y. Yuan, Y. Zhan, Y. Sun, X. Qiu, C. Meng, C. Song, and C. Ding. 2016. Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine 34 (44): 5209–5216. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vaccine.2016.09.022.
Tanhaiean, A., M. Azghandi, J. Razmyar, E. Mohammadi, and M.H. Sekhavati. 2018. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microbial Pathogenesis 122: 73–78. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.micpath.2018.06.012.
Tesfagaber, W., D. Lan, W. Wang, R. Zhao, L. Yin, M. Yang, Y. Zhu, E. Sun, R. Liu, W. Lin, et al. 2024. Identification of two novel B-cell epitopes on E184L protein of African swine fever virus using monoclonal antibodies. Virus Research 346: 199412. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.virusres.2024.199412.
Thueng-In, K., S. Theerawatanasirikul, P. Meechan, P. Lekcharoensuk, and W. Chaicumpa. 2023. Cell-penetrating porcine single-chain antibodies (transbodies) against nonstructural protein 1β (NSP1β) of porcine reproductive and respiratory syndrome virus inhibit virus replication. Archives of Virology 168 (5): 133. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00705-023-05760-3.
Tiwari, P.M., E. Eroglu, S.S. Bawage, K. Vig, M.E. Miller, S. Pillai, V.A. Dennis, and S.R. Singh. 2014. Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus. Biomaterials 35 (35): 9484–9494. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biomaterials.2014.07.032.
Todaro, B., E. Ottalagana, S. Luin, and M. Santi. 2023. Targeting peptides: The new generation of targeted drug delivery systems. Pharmaceutics 15 (6): 1648. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pharmaceutics15061648.
TopuzoĞullari, M., Acar, T., Pelİt Arayici, P., UÇar, B., UĞurel, E., Abamor, E. Ş., ArasoĞlu, T., Turgut-Balik, D., & Derman, S. (2020). An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turkish Journal of Biology = Turk Biyoloji Dergisi, 44(3), 215–227. https://doiorg.publicaciones.saludcastillayleon.es/10.3906/biy-2006-1
Trabulo, S., A.L. Cardoso, M. Mano, and M.C.P. De Lima. 2010. Cell-penetrating peptides-mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals (Basel, Switzerland) 3 (4): 961–993. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ph3040961.
Uddin, M. B., Tanni, F., Hoque, S. F., Sajib, E. H., Faysal, M. A., Rahman, M., Galib, A., Emon, A. A., Hossain, M. M., Hasan, M., et al. (2022). A candidate multiepitope vaccine against Lumpy Skin Disease. Transboundary and Emerging Diseases, 69. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/tbed.14718
Valdez-Miramontes, C.E., J. De Haro-Acosta, C.F. Aréchiga-Flores, L. Verdiguel-Fernández, and B. Rivas-Santiago. 2021. Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides 142: 170576. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.peptides.2021.170576.
Vasilchenko, A.S., V.V. Dymova, O.L. Kartashova, and M.V. Sycheva. 2015. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets. Probiotics and Antimicrobial Proteins 7 (1): 60–65. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12602-014-9172-4.
Wang, C., W.-Y. Wen, C.-X. Su, F.-F. Ge, Z.-G. Dang, X.-G. Duan, R.-B. Cao, B. Zhou, and P.-Y. Chen. 2008. Bursin as an adjuvant is a potent enhancer of immune response in mice immunized with the JEV subunit vaccine. Veterinary Immunology and Immunopathology 122 (3–4): 265–274. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetimm.2007.11.010.
Wang, F., X. Feng, Q. Zheng, H. Hou, R. Cao, B. Zhou, Q. Liu, X. Liu, R. Pang, J. Zhao, et al. 2012. Multiple linear epitopes (B cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response. Virology Journal 9: 204. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1743-422X-9-204.
Wang, Y., J. Li, X. Dai, Z. Wang, X. Ni, D. Zeng, Y. Zeng, D. Zhang, and K. Pan. 2023. Effects of antimicrobial peptides Gal-13 on the growth performance, intestinal microbiota, digestive enzyme activities, intestinal morphology, antioxidative activities, and immunity of broilers. Probiotics and Antimicrobial Proteins 15 (3): 694–705. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12602-021-09905-1.
Wang, D., P. Yu, R. She, and K. Wang. 2024. Protective effects of rabbit sacculus-derived antimicrobial peptides on SPF chicken against infection with very virulent infectious bursal disease virus. Poultry Science 103 (7): 103797. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.psj.2024.103797.
Wei, J., Y. Huang, D. Zhong, L. Kang, H. Ishag, X. Mao, R. Cao, B. Zhou, and P. Chen. 2010. Design and evaluation of a multiepitope peptide against Japanese encephalitis virus infection in BALB/c mice. Biochemical and Biophysical Research Communications 396 (4): 787–792. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2010.04.133.
Wei, X., L. Zhang, R. Zhang, R. Wu, J.N. Petitte, Y. Hou, D. Si, B. Ahmad, H. Guo, M. Zhang, et al. 2021. Targeting the TLR2 Receptor With a Novel Thymopentin-Derived Peptide Modulates Immune Responses. Frontiers in Immunology 12: 620494. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2021.620494.
Wen, Y., R. Chen, J. Yang, E. Yu, W. Liu, Y. Liao, Y. Wen, R. Wu, Q. Zhao, S. Du, et al. 2023. Identification of potential SLA-I-specific T-cell epitopes within the structural proteins of porcine deltacoronavirus. International Journal of Biological Macromolecules 251: 126327. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijbiomac.2023.126327.
Xia, T., N. Wang, Y. Tang, Y. Gao, C. Gao, J. Hao, Y. Jiang, X. Wang, Z. Shan, J. Li, et al. 2022. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Frontiers in Immunology 13: 926279. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2022.926279.
Xia, T., X. Lu, D. Kong, T. Guo, Y. Gao, L. Xin, Y. Jiang, X. Wang, Z. Shan, J. Li, et al. 2024. Screening optimal DC-targeting peptide to enhance the immune efficacy of recombinant Lactobacillus expressing RHDV VP60. Virulence 15 (1): 2368080. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/21505594.2024.2368080.
Xiong, D., L. Song, X. Zhai, S. Geng, Z. Pan, and X. Jiao. 2015. A porcine reproductive and respiratory syndrome virus (PRRSV) vaccine candidate based on the fusion protein of PRRSV glycoprotein 5 and the Toll-like Receptor-5 agonist Salmonella Typhimurium FljB. BMC Veterinary Research 11: 121. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12917-015-0439-0.
Xu, Y.-G., X.-T. Guan, Z.-M. Liu, C.-Y. Tian, and L.-C. Cui. 2015. Immunogenicity in swine of orally administered recombinant Lactobacillus plantarum expressing classical swine fever virus E2 protein in conjunction with thymosin α-1 as an adjuvant. Applied and Environmental Microbiology 81 (11): 3745–3752. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/AEM.00127-15.
Xu, Y., M. Dong, Q. Wang, Y. Sun, B. Hang, H. Zhang, J. Hu, and G. Zhang. 2023. Soluble Expression of Antimicrobial Peptide BSN-37 from Escherichia coli by SUMO Fusion Technology. The Protein Journal 42 (5): 563–574. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10930-023-10144-2.
Yang, T., H.-N. Wang, X. Wang, J.-N. Tang, D. Lu, Y.-F. Zhang, Z.-C. Guo, Y.-L. Li, R. Gao, and R.-M. Kang. 2009. The protective immune response against infectious bronchitis virus induced by multiepitope based peptide vaccines. Bioscience, Biotechnology, and Biochemistry 73 (7): 1500–1504. https://doiorg.publicaciones.saludcastillayleon.es/10.1271/bbb.80864.
Yang, D., C. Zhang, L. Zhao, G. Zhou, H. Wang, and L. Yu. 2011. Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralizing monoclonal antibody 8E8. Virus Research 155 (1): 291–299. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.virusres.2010.10.024.
Yang, L., X. Lu, and W. Fang. 2017. Expression and purification of classical swine fever virus E2 protein from Sf9 cells using a modified vector. Biotechnology Letters 39 (12): 1821–1825. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10529-017-2426-y.
Yang, S., X. Zhang, Y. Cao, S. Li, J. Shao, S. Sun, H. Guo, and S. Yin. 2021. Identification of a new cell-penetrating peptide derived from the african swine fever virus CD2v protein. Drug Delivery 28 (1): 957–962. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/10717544.2021.1909178.
Yang, H., M. Sun, H. Qiu, H. Xu, Z. Deng, H. Gu, N. Wang, L. Du, F. Shi, J. Zhou, et al. 2024. Nanobody peptide conjugate: A novel CD163 based broad neutralizing strategy against porcine reproductive and respiratory syndrome virus. Journal of Nanobiotechnology 22 (1): 388. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12951-024-02662-7.
Yao, Y., J. Wang, Y. Liu, Y. Qu, K. Wang, Y. Zhang, Y. Chang, Z. Yang, J. Wan, J. Liu, et al. 2022. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood-brain barrier in rodents and primates. Nature Biomedical Engineering 6 (11): 1257–1271. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41551-022-00938-7.
Yin, Q., W. Luo, V. Mallajosyula, Y. Bo, J. Guo, J. Xie, M. Sun, R. Verma, C. Li, C.M. Constantz, et al. 2023. A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2. Nature Materials 22 (3): 380–390. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41563-022-01464-2.
Yu, W., Y. Zhan, B. Xue, Y. Dong, Y. Wang, P. Jiang, A. Wang, Y. Sun, and Y. Yang. 2018. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. The Journal of Biological Chemistry 293 (39): 15221–15232. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.RA118.004823.
Zeigler, D.F., E. Gage, R. Roque, and C.H. Clegg. 2019. Epitope targeting with self-assembled peptide vaccines. NPJ Vaccines 4: 30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41541-019-0125-5.
Zhang, G., W. Liu, Z. Gao, S. Yang, G. Zhou, Y. Chang, Y. Ma, X. Liang, J. Shao, and H. Chang. 2021a. Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. International Immunopharmacology 101 (Pt A): 108251. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.intimp.2021.108251.
Zhang, Q.-Y., Z.-B. Yan, Y.-M. Meng, X.-Y. Hong, G. Shao, J.-J. Ma, X.-R. Cheng, J. Liu, J. Kang, and C.-Y. Fu. 2021b. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research 8 (1): 48. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40779-021-00343-2.
Zhang, Y., P. Guo, Z. Ma, P. Lu, D. Kebebe, and Z. Liu. 2021c. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: A review. Journal of Nanobiotechnology 19 (1): 255. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12951-021-01002-3.
Zhang, R., L. Xu, and C. Dong. 2022. Antimicrobial peptides: An overview of their structure, function and mechanism of action. Protein and Peptide Letters 29 (8): 641–650. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/0929866529666220613102145.
Zhang, H., Y. Zhang, C. Zhang, H. Yu, Y. Ma, Z. Li, and N. Shi. 2023a. Recent advances of cell-penetrating peptides and their application as vectors for delivery of peptide and protein-based cargo molecules. Pharmaceutics 15 (8): 2093. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pharmaceutics15082093.
Zhang, Y., D. Na, W. Zhang, X. Liu, S. Miao, W.-S. Tan, and L. Zhao. 2023b. Development of stable HEK293T cell pools expressing CSFV E2 protein: A potential antigen expression platform. Vaccine 41 (9): 1573–1583. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vaccine.2023.01.038.
Zhao, T., Y. Cai, Y. Jiang, X. He, Y. Wei, Y. Yu, and X. Tian. 2023. Vaccine adjuvants: Mechanisms and platforms. Signal Transduction and Targeted Therapy 8 (1): 283. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41392-023-01557-7.
Zhao, Y., Yu, J., Su, Y., Shu, Y., Ma, E., Wang, J., Jiang, S., Wei, C., Li, D., Huang, Z., et al. (2025). A unified deep framework for peptide–major histocompatibility complex–T-cell receptor binding prediction. Nature Machine Intelligence, 1–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s42256-025-01002-0
Zhong, D., Z. Lu, Y. Xia, H. Wu, X. Zhang, M. Li, X. Song, Y. Wang, A. Moon, H.-J. Qiu, et al. 2024. Ferritin nanoparticle delivery of the E2 protein of classical swine fever virus completely protects pigs from lethal challenge. Vaccines 12 (6): 629. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/vaccines12060629.
Zhou, B., Liu, K., Jiang, Y., Wei, J.-C., & Chen, P.-Y. (2011). Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response. Virology Journal, 8, 378. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1743-422X-8-378
Zhu, J., X. He, D. Bernard, J. Shen, Y. Su, A. Wolek, B. Issacs, N. Mishra, X. Tian, A. Garmendia, et al. 2023. Identification of new compounds against PRRSV infection by directly targeting CD163. Journal of Virology 97 (5): e0005423. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/jvi.00054-23.
Zhu, J., Z. Liang, H. Yao, and Z. Wu. 2024. Identifying cell-penetrating peptides for effectively delivering antimicrobial molecules into Streptococcus suis. Antibiotics (Basel, Switzerland) 13 (8): 725. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/antibiotics13080725.
Acknowledgements
All illustrations were designed via software provided by BioRender.
Funding
This study was conducted without external financial support.
Author information
Authors and Affiliations
Contributions
A.C.P.: investigation, resources, visualization, writing-original draft. Y.X.D.: resources, Writing—review & editing. X.J.W.: resources, writing—review & editing. H.F.: conceptualization, supervision, validation, project administration.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests. Author Fang He was not involved in the journal’s review or decisions related to this manuscript.
Additional information
Handing editor: Yifei Lang.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Pratama, A.C., Yin, X., Xu, J. et al. Functional immunopeptides: advancing prevention and therapeutic strategies against animal diseases. Animal Diseases 5, 16 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s44149-025-00168-9
Received:
Accepted:
Published:
DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s44149-025-00168-9